09-Nov-2021 - Friedrich-Alexander-Universität Erlangen-Nürnberg

How Cells Correctly Choose Active Genes

Formation of Transcription Factories Resembles Condensation of Liquids

It is essential for cells to control precisely which of the many genes of their genetic material they use. This is done in so-called transcription factories, molecular clusters in the nucleus. Researchers of Karlsruhe Institute of Technology (KIT), Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), and Max Planck Center for Physics and Medicine (MPZPM) have now found that the formation of transcription factories resembles the condensation of liquids. Their findings will improve the understanding of causes of diseases and advance the development of DNA-based data storage systems. The scientists report in Molecular Systems Biology.

Human genetic material contains more than 20,000 different genes. But each cell only uses a fraction of the information stored in this genome. Hence, cells have to control precisely which genes they use. If not, cancer or embryonal growth disorder may develop. So-called transcription factories play a central role in the selection of active genes. “These factories are molecular clusters in the nucleus that combine the correct selection of active genes and the read-out of their sequence at a central location,” Lennart Hilbert explains. The Junior Professor for Systems Biology/Bioinformatics at the Zoological Institute (ZOO) of KIT also heads a working group at KIT’s Institute of Biological and Chemical Systems – Biological Information Processing (IBCS-BIP).

Setup and Start within a Few Seconds

For decades, cellular and molecular biologists have studied how transcription factories are set up and taken into operation within a few seconds. Results obtained so far suggest relevance of processes known from industrial and technical polymer and liquid materials only. Current research focuses on phase separation as a central mechanism. In everyday life, phase separation can be observed when separating oil from water. It has not yet been clear, however, how exactly phase separation contributes to the setup of transcription factories in living cells.

Researchers from KIT’s Institute of Biological and Chemical Systems (IBCS), Zoological Institute (ZOO), Institute of Applied Physics (APH), and Institute of Nanotechnology (INT), in cooperation with scientists from FAU and MPZPM in Erlangen and the University of Illinois at Urbana-Champaign/USA, have now gained new findings on the formation of transcription factories: It is similar to the condensation of liquids. This is reported in Molecular Systems Biology. The first co-authors are Agnieszka Pancholi of IBCS-BIP and ZOO and Tim Klingberg of FAU and MPZPM.

Latest Light Microscopy Combined with Computer Simulations

In their publication, the researchers point out that condensation to form transcription factories resembles steamy glasses or windows. Liquid condenses in the presence of a receptive surface only, but then very quickly. In the living cell, specially marked areas of the genome are used as condensation surfaces. The liquid-coated areas allow for the adhesion of relevant gene sequences and additional molecules that eventually activate the adhering genes. These findings were obtained by interdisciplinary cooperation. Zebrafish embryos were studied with latest light microscopes developed by Professor Gerd Ulrich Nienhaus’s Chair at APH. These observations were then linked to computer simulations at the FAU Chair for Mathematics headed by Professor Vasily Zaburdaev. Combination of observations and simulations makes the condensation process reproducible and explains how living cells can set up transcription factories rapidly and reliably.

New understanding of condensed liquids in living cells recently resulted in entirely new approaches to treating cancer and diseases of the nervous system. These approaches are now being pursued by startups developing new drugs. Other research activities focus on the use of DNA sequences as digital data storage systems. Meanwhile, principle feasibility of DNA-based data storage systems has been demonstrated by several working groups. Reliable storage and read-out of information in such DNA storage media still represent big challenges. “Our work shows how the biological cell organizes such processes rapidly and reliably. The computer simulations and functional concepts developed by us can be transferred directly to artificial DNA systems and can support their design,” Lennart Hilbert says.

Facts, background information, dossiers

  • cells
  • transcription
  • genes

More about Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Carbyne – an unusual form of carbon

    Which photophysical properties does carbyne have? This was the subject of research carried out by scientists at FAU, the University of Alberta, Canada, and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, which has led to a greater understanding of the properties of this unusual ... more

    Zips on the nanoscale

    Nanostructures based on carbon are promising materials for nanoelectronics. However, to be suitable, they would often need to be formed on non-metallic surfaces, which has been a challenge – up to now. Researchers at FAU have found a method of forming nanographenes on metal oxide surfaces. ... more

    Cells that destroy the intestine

    More than 4000,000 people in Germany are affected by the chronic inflammatory bowel diseases Morbus Crohn or ulcerative colitis. Patients often suffer from flare-ups, which damage intestinal tissue. Until now, little has been known about what actually causes flare-ups. Working together with ... more

  • q&more articles

    Colorful off-odors in artists’ paints

    Acrylic-based paints are among the most frequently used by artists. Although they can be produced on a water basis and with low levels of volatile substances, they often still possess a strong inherent smell. However, no targeted studies have as yet been conducted to identify odor-active su ... more

    New Trends in Computer-Aided Drug Design

    Computer-Aided Drug design (CADD) is not new. The Journal of Computer-Aided Molecular Design (Springer) was founded in 1987, when computers in the worldwide top 500 were slower than today’s smart phones. This makes the field a quarter of a century old. Generally, scientific disciplines of t ... more

  • Authors

    Prof. Dr. Andrea Büttner

    Andrea Büttner, born in 1971, studied food chemistry at the Ludwig Maximilian University of Munich. Researching on aromas, she received her doctorate and qualification as a professor from the Technical University of Munich. Since 2007, she has built up the Product Performance business unit ... more

    Prof. Dr. Timothy Clark

    Tim Clark was born in 1949 in England and obtained his Ph.D. from the Queen’s University Belfast in 1973. He is Director of the Computer-Chemie-Centrum in Erlangen and the Centre for Molecular Design at the University of Portsmouth, UK. He develops and applies modelling and simulation techn ... more

More about KIT

  • News

    Machine Learning Speeds up Simulations in Material Science

    Research, development, and production of novel materials depend heavily on the availability of fast and at the same time accurate simulation methods. Machine learning, in which artificial intelligence (AI) autonomously acquires and applies new knowledge, will soon enable researchers to deve ... more

    Catalyst Research: Molecular Probes Require Highly Precise Calculations

    Catalysts are indispensable for many technologies. To further improve heterogeneous catalysts, it is required to analyze the complex processes on their surfaces, where the active sites are located. Scientists of Karlsruhe Institute of Technology (KIT), together with colleagues from Spain an ... more

    Producing Graphene from Carbon Dioxide

    The general public knows the chemical compound of carbon dioxide as a greenhouse gas in the atmosphere and because of its global-warming effect. However, carbon dioxide can also be a useful raw material for chemical reactions. A working group at Karlsruhe Institute of Technology (KIT) has n ... more

  • q&more articles

    Analytical quantitation of gluten in foods

    According to legislation, foods bearing a gluten-free label must not contain more than 20 mg of gluten per kilogram, which is crucial to ensure food safety for celiac disease patients. Gluten is detected by immunological, genomic, chromatographic and/or mass spectrometric methods, but the c ... more

    Assessing the lung toxicity of air pollutants

    The current debates on driving bans in European cities show not only how important air quality is to the public but also reveal the lack of available methods to directly assess the adverse effects of air pollutants on human health. more

  • Authors

    Prof. Dr. Katharina Scherf

    Katharina Scherf, born in 1985, leads the Department of Bioactive and Functional Food Chemistry at the Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT). Having studied food chemistry at the Technical University of Munich (TUM) she obtained her PhD degree and qualif ... more

    Majlinda Xhaferaj

    Majlinda Xhaferaj, born in 1992, completed her food chemistry studies in 2018 at the Karlsruhe Institute of Technology (KIT). Since 2019 she has been a PhD student under the supervision of Professor Dr. Katharina Scherf in the Department of Bioactive and Functional Food Chemistry. Her resea ... more

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt earned her diploma in mechanical engineering at the Berufsakademie Mannheim (now DHBW) in 2000, completing her concomitant training at the Karlsruhe Research Center, now the Karlsruhe Institute of Technology (KIT). In 2014 she received the Master of Science in Chemical Enginee ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: