10-Nov-2021 - Max-Planck-Institut für molekulare Physiologie

Stem cells do not (only) play dice

Stem cells work as a team and do not leave their fate to pure chance

In just a few weeks a completely new organism develops from a fertilized egg cell. The real miracle is that a bunch of identical stem cells turns into completely different, specialized cell types. A team led by Christian Schröter, group leader at the Max Planck Institute of Molecular Physiology in Dortmund, has now been able to show that the specialisation of individual cells during embryonic development is not, as previously assumed, exclusively left to chance but is rather determined by cell communication.

Stem cells are true multi-talents. They can develop into any cell type of an organism - in humans there are over 200 - and thus perform all vital tasks. Once the stem cells have decided on a task they can no longer be deterred from their goal. The final product, tissues and organs, almost always look the same and consist of defined proportions of different specialised cell types. But how do the cells actually know what they want to become and how many of them are actually allowed to do so?

Is it all just chance?

An important regulator of the distribution of tasks is the control of genes by transcription factors such as NANOG and GATA, which are both initially present in the undifferentiated stem cells. This changes fundamentally, however, in the very early development when the stem cells develop into two new cell types: Cells of the early embryo, in which now only NANOG is present and precursor cells of the fruit bladder which now exclusively carry GATA. Until now, it was thought that the decision of each individual cell was made rather randomly at an early stage, similar to a dice game, except that here only NANOG or GATA can be rolled.

Cells decide collectively

In a previous theoretical paper, Aneta Koseska, co-author of the study and former MPI group leader, was able to establish a new concept with the help of Christian Schröter, showing how stem cells specialize in right proportions in a coordinated manner. In the current publication, Christian Schröter and his team have now succeeded in substantiating the theoretical concept. Using stem cells in a test tube, the researchers were able to show that decision-making does not take place purely randomly at the level of individual cells, as previously assumed, but is communicated within the cell community.

Cheating at the stem cell dice game

In order not to leave the fate of the cells to chance, the researchers manipulated the NANOG-GATA dice in their investigations so that GATA is now rolled more often than NANOG. This was achieved experimentally by artificially increasing the amount of GATA. Even though a six was always rolled - i.e. GATA – the number of fruit bladder precursor cells could not be arbitrarily increased, but similar proportions of the two different cell types continued to emerge. The distribution of tasks during development must therefore be dependent on more than mere chance.

Decisions are communicated in the team

Following their theoretical concept, the scientists investigated the role of cellular communication in embryonic development. As a central means of communication cells use messenger substances such as growth factors, which they produce and secrete themselves. These substances are then received by other cells and control their specialization. If the researchers took away a growth factor that was important for cell development, the cells were no longer able to develop into fruit bladder precursor cells even in the presence of high amounts of GATA. However, the more of the growth factor the cells received, the more fruit bladder precursor cells also developed. Their ability to divide into the right proportions of the two cell types despite disturbances was thus lost. Stem cells must therefore communicate with each other in order to make the right decision.

"Communication in cell development is like working in a team. If the members choose tasks without consulting each other, some things are done twice and others not at all. A team that communicates well, on the other hand, can solve problems that arise and complete even complex projects reliably and efficiently", Christian Schröter says. "So it's not just the state of the individual cell that decides on its faith, but the functioning communication with the other cells."

Facts, background information, dossiers

  • stem cells
  • embryo development

More about MPI für molekulare Physiologie

  • News

    A new dimension in Stem Cell Signaling

    Divide, differentiate or die? Making decisions at the right time and place is what defines a cell’s behavior and is particularly critical for stem cells of an developing organisms. Decision making relies on how information is processed by networks of signaling proteins. The teams around Chr ... more

    Cool Microscopy: Making the invisible visible

    Fluorescence light microscopy has the unique ability to observe cellular processes over a scale that bridges four orders of magnitude. Yet, its application to living cells is fundamentally limited by the very rapid and unceasing movement of molecules and the light-induced destruction of flu ... more

    Cells talk at each other to specialize different functions

    During development, cells must specialize their function in a well defined timeline: formation of different tissues must be coordinated from a pile of cells. The research group led by Aneta Koseska (former Max Planck Institute of Molecular Physiology (MPI), CAESAR Bonn) has now developed a ... more

More about Max-Planck-Gesellschaft

  • News

    Pumping up the music of molecules

    Sensitive animal noses can sniff out trace particles, such as volatile organic compounds, in the ambient air. Humans, on the other hand, are developing innovative technologies for this purpose, such as optical spectroscopy. This uses laser light to detect the molecular composition of gases. ... more

    How to find marker genes in cell clusters

    The thousands of cells in a biological sample are all different and can be analyzed individually, cell by cell. Based on their gene activity, they can be sorted into clusters. But which genes are particularly characteristic of a given cluster, i.e. what are its “marker genes”? A new statist ... more

    Cell-culture breakthrough: Advanced “mini brains” in the dish

    “Outer Radial Glia” (oRG) cells are nervous system stem cells that are instrumental for the development of the human cortex and have been challenging to produce in the lab. Now, a team of Max Planck researchers from Berlin succeeded in generating brain organoids that are enriched with these ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: