24-Nov-2021 - Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Fighting blood diseases with artificial intelligence

Largest open-source database for bone marrow cell images developed

How can we better diagnose blood diseases? A research group led by Helmholtz Munich aims to answer this question with artificial intelligence (AI). Their goal is to facilitate the time-consuming analysis of bone marrow cells under the microscope. The researchers developed the largest open-source database on microscopic images of bone marrow cells to date. They use it as the basis for an AI model with high potential for routine diagnostics.

Every day, cytologists around the world use optical microscopes to analyze and classify samples of bone marrow cells thousands of times. This method to diagnose blood diseases was established more than 150 years ago, but it suffers from being very complex. Looking for rare but diagnostically important cells is both a laborious and time-consuming task. Artificial intelligence has the potential to boost this method – however it needs a large amount of high-quality data to train an AI algorithm.

Largest open-source database for bone marrow cell images

The Helmholtz Munich researchers developed the largest open access database on microscopic images of bone marrow cells to date. The database consists of more than 170,000 single-cell images from over 900 patients with various blood diseases. It is the result of a collaboration from Helmholtz Munich with the LMU University Hospital Munich, the MLL Munich Leukemia Lab and Fraunhofer Institute for Integrated Circuits.

Using the database to boost artificial intelligence

“On top of our database, we have developed a neural network that outperforms previous machine learning algorithms for cell classification in terms of accuracy, but also in terms of generalizability,” says Christian Matek, lead author of the new study. The deep neural network is a machine learning concept specifically designed to process images. “The analysis of bone marrow cells has not yet been performed with such advanced neural networks,” Christian Matek explains, “which is also due to the fact that high-quality, public datasets have not been available until now.”

The researchers aim to further expand their bone marrow cell database to capture a broader range of findings and to prospectively validate their model. “The database and the model are freely available for research and training purposes – to educate professionals or as a reference for further AI-based approaches e.g. in blood cancer diagnostics,” says study leader Carsten Marr.

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers

  • artificial intelligence
  • blood diseases
  • bone marrow

More about Helmholtz Zentrum München

  • News

    AI helps to spot single diseased cells

    Researchers developed a novel artificial intelligence algorithm for clinical applications called “scArches”. It efficiently compares patients’ cells with a reference atlas of cells of healthy individuals. This enables physicians to pinpoint cells in disease and prioritize them for personali ... more

    Pancreatic organoids on newly developed chip platform

    A new organoid-on-chip platform robustly mimics the key features of human pancreas development. This is a milestone on the way to being able to diagnose pancreatic cancer at an early stage in the future. The study was conducted by an interdisciplinary team of researchers from Helmholtz Zent ... more

    Revealing the secrets of cell competition

    Cellular competition is a crucial quality control process that ensures that the development of an organism relies on healthy cells. Researchers revealed the secrets underlying cell competition and what features can pre-determine whether a cell will survive or not. Defects in energy producti ... more

  • q&more articles

    Using deep learning to better understand blood disorders

    For a long time, doctors have been diagnosing disorders of the body’s hematopoietic system using a light microscope. The analysis of individual blood cells is largely performed manually. Now, artificial intelligence can lend them a digital hand. more

  • Authors

    Dr. Carsten Marr

    Carsten Marr, born in 1977, received his diploma in general physics from the Technische Universität München in 2002. He wrote his diploma thesis at the Max-Planck-Institute for Quantum Optics, Garching, Germany, and in 2003 visited the Quantum Information and Quantum Optics Theory Group at ... more

    Dr. Christian Matek

    Christian Matek, born in 1986, received undergraduate degrees in both Physics and Medicine in Munich. He then moved to the UK and finished his DPhil in Theoretical Physics at Oxford University in 2014. Since 2017, his main research interest has been applying artificial intelligence and mach ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: