07-Dec-2021 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Harnessing the organisation of the cell surface

Scientists at ETH Zurich have developed a new method to determine how proteins are organised on the surface of cells. Insights gained with the technology could lead to the development of novel drugs to fight cancer.

Biological cells have multiple functions, and they need to communicate with each other to coordinate them. Molecules on the cell surface are central to this process. For decades, biologists have been studying such surface proteins and it is becoming increasingly clear that not only their presence but also their organisation on the cell’s surface is crucial to the function of a cell.

“Proteins aren’t simply distributed evenly and independently of one another across the cell’s surface; instead, they’re organised into molecular communities. In these communities, proteins often work together to fulfil cellular functions,” explains Bernd Wollscheid, Professor at ETH Zurich’s Institute of Translational Medicine. Together with a large interdisciplinary team that includes further researchers from ETH Zurich and other institutions, Wollscheid’s doctoral student Maik Müller has now developed a technology that can be used to discover the organisation of cell surface molecules.

Who got a kiss?

With this technology called LUX-​MS, the researchers can determine with nanometer-​scale precision how proteins integrate into an organisation on the cell surface – in other words, which proteins are in proximity to each other. So far, scientists were able to measure interactions of individual proteins that have a high affinity for each other, as well as for molecules that reside inside the cell. However, the new method is the first to enable scientists to specifically detect the organisation of the entirety of cell surface molecules. Wollscheid refers to this entirety as the “surfaceome”. The term is composed of the word “surface” and the suffix “-​ome”, that is also used in terms such as genome or proteome.

With a twinkle in his eye, Wollscheid explains the principle behind the method as follows: “We specifically modify a particular surface molecule so that it likes to ‘give kisses’ to molecules in its proximity, and then we check the other surface molecules for traces of lipstick.” In more technical terms, a small chemical compound is attached to a protein of interest. When irradiated with light, this compound produces small amounts of what are known as reactive oxygen molecules, that oxidise surface proteins in the immediate vicinity. Using a specific enrichment method and mass spectrometry in combination with statistical data analysis, the scientists can ultimately identify which molecules have been oxidised.

To determine the distance between the protein of interest and the other molecules, the researchers repeat their experiments under slightly modified conditions that affect the amount and survival time of the reactive oxygen molecules. These include the length of irradiation with light and the choice of medium in which the cells are cultured. The more reactive oxygen is locally generated and the longer that process continues, the wider the area in which surface molecules get oxidised.

Drugs that are better at targeting cancer

Wollscheid and his colleagues will now use the technology to compare cells from healthy and diseased people. “We’re trying to understand how a disease changes the organisation of proteins at the cellular level – for example, when a healthy cell transforms into a cancer cell,” Wollscheid says. The scientists are in the process of creating a reference map of healthy cells. They then plan to use it to identify differences in the organisation of protein communities on the surface of diseased cells.

Knowing which molecules exist on cell surfaces and how they are organised could become significant in areas such as the development of novel drugs to fight cancer. Modern cancer drugs employ a cell-​killing agent is often coupled to an antibody that recognises a surface molecule that is present in large quantities on cancer cells. This means the cancer cells are killed with a reasonable degree of specificity. However, many cancer-​specific surface molecules are also found on healthy cells, albeit at lower concentrations, provoking these drugs to also kill some healthy cells.

If two molecules were found to be adjacent only on a diseased but not on a healthy cell, drugs could be developed that recognise these two molecules together. The drug would then kill a cell only if both molecules were present on the cell and adjacent to each other. This is precisely the information that the new technology provides.

A wide range of applications

In the published work, the scientists showed that the scope for using this method goes beyond the investigations of which cell surface molecules are next to each other. They also tagged viruses and drugs with the small chemical compound that produces reactive oxygen. This allows the researchers to study the binding events of viruses or drugs to cells. Furthermore, the method makes it possible to investigate which protein communities are involved in the interaction between two different cells. The scientists demonstrated this using the example of communication between immune cells. "In this way, the new method can help to understand how drugs work and how viruses or immune cells recognise other cells," says ETH doctoral student Müller. "The method is therefore of great benefit for research at universities and in industry."

Müller and Wollscheid developed and tested the new method in an interdisciplinary collaboration including ETH Zurich Professors Martin Loessner, Annette Oxenius, Jeffrey Bode, Erick Carreira and Berend Snijder. Researchers from the University of Zurich, the University of Michigan and an American drug development company also contributed to the study, which was published in the journal Nature Communications. The scientists have transferred the new technology to a spin-​off company, which now plans to use the technology to develop new drugs against not only individual surface proteins but entire protein communities.

Facts, background information, dossiers

  • molecules
  • proteins
  • ETH Zürich

More about ETH Zürich

  • News

    Mapping human brain development

    Researchers at ETH Zurich are growing human brain-​like tissue from stem cells and are then mapping the cell types that occur in different brain regions and the genes that regulate their development. The human brain is probably the most complex organ in the entire living world and has long ... more

    Monitoring gene activities in living cells

    Researchers from ETH Zurich and EPFL are expanding the emerging field of single-​cell analysis with a ground-​breaking method: Live-​seq makes it possible to measure the activity of thousands of genes in a single cell without having to isolate and destroy it. Modern biology is increasingly ... more

    Hydrogel keeps vaccines alive

    Most vaccines require constant refrigeration during shipment to remain effective. An international research team led by ETH Zurich has now developed a special hydrogel that vastly improves the shelf life of vaccines, even without refrigeration. The development could save many lives and lowe ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: