10-Dec-2021 - Martin-Luther-Universität Halle-Wittenberg (MLU)

Turbo boost for materials research

Researchers train AI to predict new compounds

A new algorithm has been designed to help discover previously unknown material compounds. It was developed by a team from Martin Luther University Halle-Wittenberg (MLU), Friedrich Schiller University Jena and Lund University in Sweden. The researchers designed a form of artificial intelligence (AI) based on machine learning that can perform complex calculations within a very short space of time. This has enabled the team to identify several thousand potential new compounds using a computer. The study was published in the journal Science Advances.

Inorganic materials are essential for humans. For example, they form the basis for solar cells and for new advancements in semiconductor electronics that are used in technical devices. Around 50,000 stable inorganic compounds have already been identified. "However, considerably more may theoretically exist - if they can be produced artificially," says Dr Miguel Marques, professor of physics at MLU. There are two basic ways to detect these undiscovered materials: in the laboratory via countless experiments on different substances, or through computer simulation. The latter has increasingly become standard in recent years, says Marques: "The problem is that many earlier approaches require a lot of computing power and are slow to produce results." 

The researchers therefore developed a new method based on machine learning. Instead of performing whole calculations, the computer predicts their final results. "In other words, we want to obtain the results of the calculations without having to do the actual calculations," says Jonathan Schmidt from MLU, first author of the new study. "This requires two things: an algorithm that carries out the desired task, and a dataset which can be used to train the algorithm," adds the physicist. The team used several databases containing over 2.4 million compounds. "The calculations on which these databases are based have a combined calculation time of 100 to 200 million hours," says Schmidt.   

The new AI searches for new materials much faster than previous methods and is expected to soon also predict their electrical and optical properties. The researchers have already been able to identify several thousand possible candidates. "Of course, promising material candidates and their properties have to be confirmed by experiments and investigated further. However, we are very confident that most of our predictions will be confirmed," says Marques.

Facts, background information, dossiers

  • material science
  • artificial intelligence
  • machine-learning
  • prediction models
  • new materials

More about MLU

More about Uni Jena

  • News

    Artificial intelligence helps to find new natural substances

    More than a third of all medicines available today are based on active substances from nature and a research team from the University of Jena has developed a procedure to identify small active substance molecules much more quickly and easily. Secondary natural substances that occur in numer ... more

    Small molecules with a dual function

    The human gut is a multi-species habitat that can control our health and well-being. Bacteria, viruses and microbial fungi are part of this complex microbial community and help us with our digestion and immune defense. If the intestinal flora is impaired, for example by contaminated drinkin ... more

    Making the invisible visible

    Researchers from Friedrich Schiller University Jena, the University of California Berkeley and the Institut Polytechnique de Paris use intense laser light in the extreme ultraviolet spectrum to generate a non-linear optical process on a laboratory scale – a process which until now has only ... more

  • q&more articles

    Genes on sugar

    The targeted transport of DNA and RNA using vectors (mostly made from synthetic polymers) in cell cultures has become part of routine practice in biological R&D – a fact highlighted by the multitude of commercial kits now available. To date, however, obstacles relating to use in patients ha ... more

    Highly-prized components

    The isolation of bioactive plant ingredients, essential oils or dyes and flavourings of plant origin requires costly and sophisticated procedures. Several applications do not actually require isolation of the individual components, however – their concentration is sufficient. Moreover, for ... more

    Molecules in the mirror

    In 1871 the children‘s book “Through the Looking-Glass – And What Alice Found There” by the English author Lewis Carroll, in which Alice enters a world behind the mirror, was published. She explains to her cat: “First there’s the room you can see through the glass – that’s just the same as ... more

  • Authors

    Prof. Dr. Ulrich S. Schubert

    Ulrich S. Schubert, born in 1969, is Chair (W3) for Organic and Macromolecular Chemistry at Friedrich Schiller University Jena, Germany. He studied chemistry at the Universities of Frankfurt and Bayreuth and subsequently received his PhD from the Universities of Bayreuth and South Florida, ... more

    Prof. Dr. Thomas Heinze

    Thomas Heinze, born in 1958, studied chemistry at FSU Jena. After receiving his doctorate there in 1989 and subsequent postdoc work at KU Leuven (Belgium), he completed his habilitation in 1997. In 2001, he accepted a professorship in Macromolecular Chemistry at the University of Wuppertal ... more

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer is a licensed pharmacist before obtaining her doctorate in pharmaceutical technology and biopharmacy from the Philipps University of Marburg in 1997. After a period spent at Texas Tech University Health Sciences Center (USA), she gained several years' experience as Head of Pr ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: