23-Dec-2021 - Universität Zürich

Mechanism for DNA Invasion of Adenoviral Covid-19 Vaccines Discovered

Premature release of DNA activates anti-viral alarm systems

Adenoviruses have a linchpin protein that stabilizes their DNA until it reaches the infected cell’s nucleus. The protein then detaches from the viral genome, and the virus uncoats. Only then are the genes released into the nucleus, which is necessary for the production of new viruses. This process, discovered by researchers at the University of Zurich, is a key for effective functioning of various Covid-19 vaccines.

Adenoviruses cause respiratory illnesses in humans and have been used as vectors in vaccination for many years, for example against MERS and Ebola virus. Several Covid-19 vaccines are based on replication-defective adenoviruses, including products from AstraZeneca, Johnson & Johnson, CanSino Biologics and Sputnik V. The vaccinated cells produce the SARS-CoV-2 spike protein on their surface, and thereby trigger a protective immune response in the human body.

Viral protein increases stability of virus particle

Researchers are exploiting a key feature of adenoviruses, namely their ability to infect human cells and transfer foreign DNA into the nucleus of these cells. A new study led by Urs Greber, professor at the Department of Molecular Life Sciences at the University of Zurich (UZH), now shows that this process evolved a sophisticated mechanism. “The viral protein V plays a key role. It connects the DNA with the protein coat surrounding the genome. Protein V increases the stability of the virus particle outside the cell, and also in the cytoplasm of the infected cells,” explains Greber.

The protein coat prevents the cell from recognizing the invading foreign DNA and activating the alarm systems. Once the virus particle reaches the nuclear pore complex – the gateway into the nucleus – the viral DNA is released into the nucleus, where the genetic information is read by the cell’s machinery, resulting in the relevant proteins being produced. In Covid-19 vaccines, the cells produce the spike protein on the coronavirus’s surface. Presenting the viral protein on the outside of the cell then triggers the immune response in the human body.

Premature release of DNA activates anti-viral alarm systems

The UZH scientists have shown that an adenovirus that is missing the protein V is not only less stable than regular adenoviruses, but also releases its DNA prematurely, before reaching the nuclear pore complex. “This reduces infection and triggers reactions activating the immune system,” says Greber. Too many of these reactions trigger inflammation. Notably, both vector-based and mRNA vaccines against coronavirus require just the right amount of these reactions to induce a strong immune response.

In vector-based vaccines, the protective protein coat around the DNA enables the particle to reach the nuclear pore complex, where the viral DNA is released. This “uncoating” is absolutely essential for nuclear import, and success in vector-based vaccination, since the nuclear pore complex prevents large virus particles from invading the nucleus. “We were able to demonstrate that the protein V uses the activation by a cellular enzyme named Mind bomb 1, which changes its features and leads to the disruption of the protein coat. The enzyme thereby initiates the nuclear import of the viral DNA genome,” says Greber.

Stopping viral infection and improving gene therapy

To demonstrate this key function of Mind bomb1, the researchers used regular adenoviruses to infect human cells that lacked Mind bomb 1, as well as a virus mutant containing protein V, which cannot be modified by this enzyme. In both cases, nuclear import of the viral DNA was defective and the virus particles clustered at the nuclear pore complexes. In other words, the viral infection was stopped.

“Our results inspire the development of anti-viral strategies and enhance procedures to transfer genes into diseased cells for clinical therapy,” says Urs Greber. Notably, adenoviruses are employed in a variety of ways – including use as DNA carriers for gene editing in genetic and metabolic diseases as well as cancer.

Facts, background information, dossiers

  • adenoviruses
  • COVID-19
  • vaccines
  • coronaviruses

More about Universität Zürich

  • News

    Lipid Metabolism Controls Brain Development

    A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development. If the enzyme does not work correctly, it causes learning and memory deficits in humans and mice, as researchers at the University of Zurich have discovered. Regulating stem cell activity via lipid m ... more

    Newly Discovered Protein Gives Signal for Virus Infection

    Researchers at the University of Zurich have discovered a protein that enables adenoviruses to infect human cells. The Mib1 protein gives the virus the signal to uncoat the DNA and release it into the nucleus. Blocking this protein could therefore help people with weakened immune systems to ... more

    Antibiotics with Novel Mechanism of Action Discovered

    Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics. Swiss researchers co-headed by the University of Zurich have now discovered a new class of antibiotics with a unique spectrum of activity and mechanism of action – a major step in the fight against a ... more

  • q&more articles

    From the reveller to the lark

    Because of their genes, some people come into the world either as a lark (early riser) or a night-owl (late sleeper). In addition, however, even in normal people, such ”chronotype“ changes with age. Starting at puberty they develop into revellers. At the age of 20 a change occurs and the ... more

  • Authors

    Dr. Steven A. Brown

    Steven B. Brown studied biochemistry at Harvard College, Cambridge, Massachusetts, USA. In 1997 he received his doctorate in the Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. From 1998 – 2005 he was a postdoctoral fellow at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: