14-Jan-2022 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

AI offers a faster way to predict antibiotic resistance

Huge new data set combines mass spectrometry data with information on antibiotic resistance

A study under co-leadership of the ETH Zurich has shown that computer algorithms can determine antimicrobial resistance of bacteria faster than previous methods. This could help treat serious infections more efficiently in the future.

Antibiotic-resistant bacteria are on the rise all over the world – and Switzerland is no exception. Each year, infections caused by multi-drug resistant bacteria lead to at least 300 fatalities in Switzerland alone. Rapid diagnostic testing and the targeted use of antibiotics play a crucial role in curbing the spread of these antibiotic-resistant “superbugs”.

However, it often takes two or more days to determine which antibiotics are still effective against a particular pathogen because the bacteria from the patient’s sample first have to be cultivated in the diagnostic lab. Due to this delay, many doctors initially treat serious infections with a class of drugs known as broad-spectrum antibiotics, which are effective against a broad range of bacterial species.

Now, researchers at ETH Zurich, the University Hospital Basel and the University Basel have developed a method that uses mass spectrometry data to identify signs of antibiotic resistance in bacteria up to 24 hours earlier.

“Intelligent computer algorithms search the data for patterns that distinguish resistant bacteria from those that are responsive to antibiotics,” says Caroline Weis, a doctoral student in the Department of Biosystems Science and Engineering at ETH Zurich in Basel and the study’s lead author. The researchers published their method in the latest issue of the journal Nature Medicine.

The time to optimal therapy is critical

By identifying significant antibiotic resistances at an early stage, doctors can tailor an antibiotic therapy to the relevant bacterium more quickly. This can be particularly beneficial for seriously ill patients.

“The time taken to optimise antibiotic therapy might mean the difference between life and death if an infection is serious. A fast, accurate diagnosis is extremely important in those kinds of cases,” says Adrian Egli, professor and Head of Clinical Bacteriology at the University Hospital Basel.

The mass spectrometry instrument that supplies the data for the new method is already in use at many microbiology labs worldwide to identify bacterial types. The device analyses thousands of protein fragments in each sample and then creates an individual fingerprint of the bacterial proteins. This process also requires bacteria to be cultured beforehand, but only for a few hours rather than a few days.

Huge new data set has been created

The researchers in Basel have developed a new method that extends the uses of mass spectrometry to include the identification of antibiotic resistance. For this dataset, the teams extracted more than 300,000 mass spectra of individual bacteria from four laboratories in North-Western Switzerland and linked these to the results of the corresponding clinical resistance tests. The result is a new, publicly available dataset covering around 800 different bacteria and over 40 different antibiotics.

“Our next step was to train artificial intelligence algorithms with this data such that they could learn to detect antibiotic resistance on their own,” says Karsten Borgwardt, professor in the Department of Biosystems Science and Engineering at ETH Zurich in Basel, who led the study together with Prof. Egli.

In order to make their predictive model as widely applicable as possible, the researchers analysed how the algorithm’s performance was influenced by the training data. The different approaches compared in the study included training the predictive model with data from just one hospital and training with data combined from multiple hospitals.

While previous studies in this field of research have focused on individual bacterial species or antibiotics, this new study draws on several bacterial types isolated in hospitals as well as a multitude of associated resistance characteristics. “Our dataset is the largest to date to combine mass spectrometry data with information on antibiotic resistance,” Borgwardt says. “It’s a great example of how existing clinical data can be used to generate new knowledge.”

Model reliably detects common resistances

To gauge the usefulness of the computer predictions, the researchers teamed up with an Infectious Diseases expert to analyse around 60 case studies. Their goal was to determine the extent to which the predictions would have influenced the choice of antibiotic therapy if they had been available to the clinician at an early stage in the decision-making process.

The research team deliberately chose case studies featuring the most important antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and gut bacteria resistant to broad-spectrum beta-lactam antibiotics (E. coli).

One reason this case study is so important is that doctors also tend to base their choice of antibiotic on factors such as a patient’s age and medical history. The results showed that the new method would indeed have prompted the clinician to opt for an improved antibiotic therapy in some cases.

Planning underway for a clinical trial

Before the new diagnostic method can be implemented in patient care, the team will need to overcome additional challenges, which include the implementation of a large-scale clinical trial to corroborate the benefits of the new method in a routine hospital setting. “The planning for such a study is already underway,” Egli says. As an expert in clinical microbiology, he is confident that the project will improve how infections are treated over the next few years.

Borgwardt says that the project also raises many important research questions concerning the use of artificial intelligence in medicine. “This dataset allows us to take a closer look at the changes we need to make at the algorithmic level to further enhance the quality of predictions for data gathered at different points in time and at different locations.”

Facts, background information, dossiers

  • bacteria
  • antibiotic resistance
  • antibiotics

More about ETH Zürich

  • News

    Mapping human brain development

    Researchers at ETH Zurich are growing human brain-​like tissue from stem cells and are then mapping the cell types that occur in different brain regions and the genes that regulate their development. The human brain is probably the most complex organ in the entire living world and has long ... more

    Monitoring gene activities in living cells

    Researchers from ETH Zurich and EPFL are expanding the emerging field of single-​cell analysis with a ground-​breaking method: Live-​seq makes it possible to measure the activity of thousands of genes in a single cell without having to isolate and destroy it. Modern biology is increasingly ... more

    Hydrogel keeps vaccines alive

    Most vaccines require constant refrigeration during shipment to remain effective. An international research team led by ETH Zurich has now developed a special hydrogel that vastly improves the shelf life of vaccines, even without refrigeration. The development could save many lives and lowe ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: