21-Jan-2022 - Max-Planck-Institut für Polymerforschung

More beer in the glass with physics

How water-repellent coatings can reduce foaming in industrial processes

While foam is certainly desirable in the bathtub or on beer, preventing foam - for example in industrial processes - is a much-discussed topic. Often, oils or particles are added to liquids to prevent foaming. If these are harmful to health or the environment, they must be removed again using complex methods. A team of researchers at the Max Planck Institute for Polymer Research has now shown that so-called "superamphiphobic surfaces" can be used to prevent foaming.

Foam formation and a long lifetime of the foam is desired for beer in a glass, for example - but foam should be avoided in beer bottling in order to speed up the bottling process. Foam formation is also often undesirable in other industrial processes, especially if it leads to spillages and environmental contamination.

In foams, adjacent air bubbles are separated from each other by a thin film of liquid. To generate and stabilize the foam, surface-active substances such as surfactants, often lipids or proteins are added.

Many liquids, such as beer and soaps, contain such surface-active molecules which stabilize foam. To prevent foaming, additional chemicals must therefore be added, such as oils, waxes or microparticles. These help neighboring air bubbles to fuse together quickly, causing foam to break down rapidly.

Scientists working with Doris Vollmer, group leader at the Max Planck Institute for Polymer Research in Hans-Jürgen Butt's department, have now investigated the effect of superamphiphobic surfaces on foam in more detail. These surfaces have a microscopic roughness and thus prevent liquids from adhering to them: The liquid sits on small columns of only a few micrometers - millionths of a meter - and a continuous film of air, similar to a fakir on a pin board. This effect is known, for example, from the lotus leaf.

"We asked ourselves whether we could use surfaces like this to prevent foam from forming or even dissolve existing foam," says William Wong, lead author of the study. The idea is that the fine columns destabilize the bubbles of foam on contact and cause them to burst, much like when a needle is poked into a balloon. The air within the foam is then released and escapes through the continuous layer of air in the superamphiphobic layer. The result: the foam dissolves/dissipates without the need for chemical additives or mechanical (energy-consuming) agitation.

To experimentally prove their idea, the researchers coated the inside of glasses with a thin, superamphiphobic layer and filled the glasses with beer and soapy water. In order to accurately study the foam formation or decomposition in detail, a wide variety of scientific methods were used, including high-speed photography and digital holography.

"In our opinion, the properties of such surfaces in connection with foam have long been underestimated," says Doris Vollmer. "We were able to show that superamphiphobic surfaces can efficiently destroy pre-existing foam as well as prevent foam formation in the first place."

According to the scientists, the coated glass surfaces could help speed up filling processes in the future without having to add additional substances.

Facts, background information, dossiers

More about MPI für Polymerforschung

  • News

    Combination Therapy against Cancer

    In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the ... more

    When ions rattle their cage

    Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecu ... more

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

More about Max-Planck-Gesellschaft

  • News

    Finding new weapons in Nature`s battlesites

    Interactions between microbes and other organisms are mediated by a plethora of small molecules, also called natural products. A research team led by Dr. Yi-Ming Shi and Prof. Helge Bode from the Max Planck Institute for Terrestrial Microbiology has now performed a systematic analysis of bi ... more

    The dark matter of the brain

    They are part of the brain of almost every animal species, yet they remain usually invisible even under the electron microscope. "Electrical synapses are like the dark matter of the brain," says Alexander Borst, director at the MPI for Biological Intelligence, in foundation (i.f). Now a tea ... more

    A new dimension in Stem Cell Signaling

    Divide, differentiate or die? Making decisions at the right time and place is what defines a cell’s behavior and is particularly critical for stem cells of an developing organisms. Decision making relies on how information is processed by networks of signaling proteins. The teams around Chr ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: