07-Feb-2022 - Rheinische Friedrich-Wilhelms-Universität Bonn

Structure of central inflammation switch elucidated

Study could provide medicine with a powerful therapeutic tool

Researchers at the Universities of Bonn and Regensburg have elucidated the structure of a central cellular inflammatory switch. Their work shows which site of the giant protein called NLRP3 inhibitors can bind to. This opens the way to develop new pharmaceuticals that could target inflammatory diseases such as gout, type 2 diabetes or even Alzheimer's disease. The results are published in the journal Nature.

In their study, the researchers investigated a protein molecule with the cryptic abbreviation NLRP3. This is a kind of danger sensor in the cell: It sounds the alarm when the cell is under stress, such as from a bacterial infection or toxins.

NLRP3 then induces the formation of pores within the cellular membrane, which ultimately results in the cell's death. Before that, however, the sensor molecule stimulates the formation of inflammatory messenger substances that are released through the perforated membrane. These so-called cytokines recruit more immune cells to the site and ensure that cells in the surrounding area commit suicide – thereby preventing a bacterium or virus from further spreading.

"The result is a massive inflammatory response," explains study leader Prof. Dr. Matthias Geyer from the Institute of Structural Biology at the University of Bonn. "This is certainly very useful for the defense against pathogens. But if this response is overdosed or triggered by even harmless cues, it can lead to chronic inflammatory diseases - such as type II diabetes, gout, Crohn's disease, or even dementias like Alzheimer's."

Targeted containment of inflammation

Researchers around the globe are therefore seeking for ways to target inflammatory processes without disrupting the entire mechanism of the immune response. As early as 20 years ago, the US pharmaceutical company Pfizer published an interesting finding in this regard: Certain active substances prevent the release of cytokines, the most important inflammatory messengers. How these CRIDs (Cytokine Release Inhibitory Drugs) do this, however, was unknown until now.

It has been known for several years that CRIDs somehow prevent cellular danger sensors from sounding the alarm. "We have now discovered the way in which they exert this effect," explains Geyer's colleague Inga Hochheiser. This involved isolating large amounts of NLRP3 from cells, purifying it, and adding the inhibitor CRID3. Hochheiser dropped minute portions of this mixture onto a carrier and then froze them rapidly.

This method creates a thin film of ice containing millions of NLRP3 molecules to which CRID3 is bound. These can be observed with an electron microscope. Since the molecules fall differently as they drop, different sides of them can be seen under the microscope. "These views can be combined to create a three-dimensional image," Hochheiser explains.

The cryo-EM images allow a detailed insight into the structure of the hazard sensor inactivated by CRID3. They reveal that NLRP3 in its inactive form assembles into a mega-molecule. It consists of ten NLRP3 units that together form a kind of cage. "The most exciting result of our work, however, is that we were able to identify the CRID3 molecule docked into its binding site," Geyer is pleased to report. "That was a tough nut that many groups worldwide have been trying to crack."

Inhibitor prevents the activation of the giant molecule

The binding sites (structural biologists also speak of "pockets") are located inside the cage. Each of the ten NLRP3 units has one of these pockets. When occupied by CRID3, the inhibitor blocks a flap mechanism required for NLRP3 activation. Similar to a blooming rose, which can only be visited by a bee in this state, certain parts of the NLRP3 protein reach the surface of the cage when the flap is turned over and thus become accessible.

NLRP3 is a representative of an entire family of similar proteins. Each of them presumably performs its very specific task in different inflammatory processes. "Based on our research, we believe that the pockets of all these NLRPs are different," Geyer says. "A specific inhibitor can therefore probably be found for each of them." This gives researchers a whole arsenal of potential new weapons against diverse, inflammatory diseases.

For example, the current work allows a targeted search for more effective alternatives to CRID3 that also have fewer side effects. But that is just the beginning, says Geyer, who is also a member of the ImmunoSensation2 Cluster of Excellence at the University of Bonn. "I am convinced that our study opens up a fruitful new field of research that will keep researchers busy for decades to come."

Facts, background information, dossiers

  • inflammatory disease
  • gout
  • diabetes
  • Alzheimer's disease
  • Crohn's disease

More about Universität Bonn

  • News

    Hemophilia: Training the immune system to be tolerant

    Hemophilia A is the most common severe form of hemophilia. It affects almost exclusively males. The disease can usually be treated well, but not for all sufferers. A study at the University of Bonn has now elucidated an important mechanism that is crucial for making the therapy effective. T ... more

    Fish to help in search for MS drugs

    The zebrafish serves as a model organism for researchers around the world: it can be used to study important physiological processes that also take place in a similar form in the human body. It is therefore routinely used in the search for possible active substances against diseases. Resear ... more

    Moss repair team also works in humans

    If everything is to run smoothly in living cells, the genetic information must be correct. But unfortunately, errors in the DNA accumulate over time due to mutations. Land plants have developed a peculiar correction mode: they do not directly improve the errors in the genome, but rather ela ... more

  • q&more articles

    A colorful variety of reactions

    The continuing trend towards sustainability, naturalness and healthy nutrition is making plant-based food ingredients with biofunctional and technofunctional properties increasingly important. Polyphenols, synthesized by plants as secondary metabolites, possess the molecular characteristics ... more

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Prof. Dr. Andreas Schieber

    Andreas Schieber, born in 1966, studied food chemistry at the University of Stuttgart and received his doctorate in 1996 from the University of Hohenheim. After his second state examination at the Chemical and Veterinary Investigation Office in Stuttgart, he returned to the university in 19 ... more

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

More about Uni Regensburg

  • News

    A crystalline attoclock

    From experience, driving through the city centre takes longer than covering the same distance on an open country road. After all, you will encounter a lot of other road users, red lights, road works and traffic jams in the city centre. Conversely, if you want to find out how busy a road is ... more

    Cellular stress causes cancer cell chemoresistance

    Resistance of cancer cells against therapeutic agents is a major cause of treatment failure, especially in recurrent diseases. An international team around the biochemists Robert Ahrends from the University of Vienna and Jan Medenbach from the University of Regensburg identified a novel mec ... more

    Initial repulsion does not rule out subsequent attraction

    The Philosopher Arthur Schopenhauer formulated a metaphor called the porcupine dilemma, which explains a certain optimal distance between people. People feel alone at too large a spacing and uneasy at too close a proximity. Schopenhauer explained the ideal spacing using the following parabl ... more

  • q&more articles

    Micelles as a reaction environment

    Photoredox catalysis has developed into a powerful tool for the synthesis of organic compounds with diverse structures. However, the high stability of carbon-chloride bonds has long hampered the use of cheap and readily available chloroalkanes as substrates. more

    Interesting Health Promoters

    There is barely a class of compounds among the secondary metabolites of plants that is so prominently represented in our lives as that of the flavonoids. They are found in ­numerous food substances in various oxidation states, and principally as glycosides (Fig. 1). By consuming fruit, vege ... more

  • Authors

    Prof. Dr. Burkhard König

    Burkhard König, born in 1963, received his Ph.D. in 1991 from the University of Hamburg. He continued his scientific education as a post-doctoral fellow with Prof. M. A. Bennett, Research School of Chemistry, Australian National University, Canberra, and Prof. B. M. Trost, Stanford Universi ... more

    Dr. Maciej Giedyk

    Maciej Giedyk, born in 1988, graduated with a Master's of Engineering degree in chemistry from the Warsaw University of Technology, Poland, in 2012. He completed his PhD studies at the Institute of Organic Chemistry Polish Academy of Sciences under the supervision of Professor Dorota Gryko ... more

    Prof. Dr. Jörg Heilmann

    born 1966, studied pharmacy at the Heinrich-Heine-University Düsseldorf and received his licence to practise in 1991. From 1991 – 1992, he worked as a pharmacist in the Löwen-Apotheke in Mülheim an der Ruhr. After receiving his doctorate in 1997 from the Chair in Pharmaceutical Biology at t ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: