21-Feb-2022 - Ruhr-Universität Bochum

New method provides more precise information on types of leukaemia

Optical genome mapping could become a component of routine diagnostics

In the characterization of leukaemias, also known as blood cancers, genetic analyses are crucial and provide information for the optimal treatment strategy. A research team from Bochum and Essen has used a new method that offers greater accuracy in this process. The so-called optical genome mapping yielded more precise information on the genetic basis of the disease in two thirds of all examined cases. The team headed by Professor Huu Phuc Nguyen, Chair of Human Genetics at Ruhr-Universität Bochum (RUB), and Professor Roland Schroers, Head of the Department of Haematology, Oncology, Stem Cell/Immune Therapy at the University Hospital Knappschaftskrankenhaus, published their findings in the International Journal of Cancer on 22 January 2022.

Laser makes molecules visible

Optical genome mapping involves the extraction of very long DNA molecules, for example routinely collected blood samples or bone marrow material from patients. These long DNA molecules are labelled with dye molecules at more than half a million different positions in the entire human genome and are then moving through ultrathin nanochannels on a special chip. As the DNA molecules move through the nanochannels, a laser is used to make them visible and they are photographed using a fluorescence microscope. The images of the entire genome are then analysed using bioinformatic analyses. “The aim is to identify and interpret changes in genetic regions that are relevant for the development of cancer,” explains Dr. Wanda Gerding from the Bochum Department of Human Genetics.

Optical genome mapping thus facilitates genome-wide analysis of regions that are important for the classification and therapy of leukaemias using one methodology. Furthermore, it also allows the identification of new relevant genomic regions and new genes.

Reliable and additional results

In the current study, the team compared the methodology to current standard diagnostics in patients with acute myeloid leukaemia as well as myelodysplastic syndromes. The researchers showed that the results obtained by optical genome mapping methodology were concordant in 93 per cent of samples compared toa conventional methodology, the so-called cytogenetic karyogram, where whole chromosomes are vizaualized. In 67 per cent of the samples, it was even possible to obtain additional genetic information.

The methodology can thus not only detect structural changes in the genome more accurately, but also has the potential to become an important component of routine diagnostics for patients with leukaemia. “As a further benefit, genome research can provide data and new insights for further research work in the field of tumour biology,” says Wanda Gerding.

Facts, background information, dossiers

  • leukemia
  • blood cancer
  • cancer
  • genome mapping
  • genetic analysis
  • diagnostics
  • bioinformatics

More about RUB

  • News

    Thriller in the bacterial kingdom

    Bacteria have a variety of survival strategies to ensure a sufficient food supply in their densely populated habitats. Certain species of bacteria kill microorganisms of another species, decompose their cells and absorb them as nutrients. The exact mechanism of this process is largely unkno ... more

    3D printed surfaces inspired by nature

    Scientists can use laser radiation to print tiny structures with high precision. This approach enables them to mimic the superpowers of animals and plants and makes them accessible for engineering applications. To survive in extreme habitats, many animals and plants have developed brilliant ... more

    How hepatitis E tricks the immune system

    Over three million people are infected with the hepatitis E virus every year. So far, no effective treatment is available. An international team has investigated which factors are important for the virus in the course of its replication cycle and how it manages to maintain the infection. Th ... more

  • q&more articles

    Customized ligands pave the way for new reaction pathways

    For the first time, an efficient catalyst for palladium-catalyzed C–C bonding between aryl chlorides and alkyl lithium compounds has been found. This reaction enables simpler synthesis routes for important products, such as pharmaceuticals, while avoiding much salt waste. more

    Light plus current: The formula for researching what happens to individual nanoparticles

    A combination of dark-field microscopy and electrochemistry can make individual nanoparticles in a liquid medium visible. The technique is suited to determine the activity of catalysts during their use. more

    Vibrational spectroscopy - Label-free imaging

    Spectroscopic methods are now granting us deep insights into biological systems at previously unattainable spatial and temporal resolutions. Complementing the already well-established fluorescence spectroscopy, the major potential of label-free vibrational spectroscopy has become clear in r ... more

  • Authors

    Henning Steinert

    Henning Steinert, born in 1993, studied chemistry at Carl-von-Ossietzky University in Oldenburg, where he researched, among other things, the activation of Si–H bonds on titanium complexes. He is currently working on his doctorate at the Ruhr-Universität Bochum, Chair of Inorganic Chemistry ... more

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, born in 1982, studied chemistry at Marburg and Würzburg universities and received her doctorate from the Technical University Dortmund in 2009. After a postdoctoral stay at the University of California in Berkeley, she headed an Emmy Noether junior research group ... more

    Kevin Wonner

    Kevin Wonner, born in 1995, studied chemistry with the focus on electrochemical nanoparticle characterization at the Ruhr University Bochum. He started his PhD in 2018 at the chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supported by the graduate school 2376. Hi ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: