07-Mar-2022 - Technische Universität Graz

Why some bubbles move faster

Why do large gas bubbles in viscoelastic liquids rise so much faster than expected?

An open question with great relevance for industrial production processes. Researchers at TU Graz and TU Darmstadt have now found an explanation.

It is a puzzle long known among experts and very relevant in many industrial production processes: a jump discontinuity in the rise velocity of gas bubbles in so-called viscoelastic fluids. Viscoelastic fluids are substances that combine characteristics of liquid and elastic substances. Many hair shampoos are an example of this. If you turn a transparent, almost completely filled bottle of shampoo upside down, you will see the enclosed air rising as a bubble in an unusual shape. In many industrial processes, such liquids occur as solutions of polymers and often have to be enriched with oxygen by gassing. “We have known for about 60 years that the rise velocity of gas bubbles in viscoelastic liquids undergoes a jump at a critical bubble diameter. The speed of the bubbles can then suddenly become up to ten times faster. This plays a fundamental role in the controlled gassing of these liquids. At the same time, it was unclear what was causing this sudden increase in velocity,” explains Günter Brenn from the Institute of Fluid Mechanics and Heat Transfer at TU Graz.

With a combination of simulation, experiment and theoretical analysis, the teams of Günter Brenn at TU Graz and Dieter Bothe at TU Darmstadt have now solved the puzzle together. They’ve found that the interaction of the polymer molecules with the flow around the gas bubbles leads to the bubbles’ strange velocity behaviour. With this knowledge, the oxygen input into these solutions can now be predicted more accurately, which means that equipment in biotechnology, process engineering and the pharmaceutical industry, for example, can be better designed. The researchers currently explain their findings in the Journal of Non-Newtonian Fluid Mechanics.

“Relaxed” state preferred

Polymers often consist of huge molecules that interact in complex ways with the liquid in which they are dissolved. This interaction makes a liquid viscoelastic. What causes the jump in velocity that gas bubbles display in these liquids from the critical diameter onwards? Günter Brenn explains the latest findings: “The flow around the bubble causes the dissolved polymer molecules to stretch. The molecules do not particularly like this state. They want to return to the relaxed, unstretched state as soon as possible.” If this return to the relaxed state is faster than the transport of the molecules to the equator of the bubble, then the bubble remains slow. If, on the other hand, the return to the relaxed state takes longer than the journey to the bubbles’s equator, then a tension is released in the fluid that “pushes” the bubble. This leads to a self-amplification, since subsequent polymer molecules position themselves below the equator and relax, unloading their elastic energy, releasing a “propulsive force".

In addition to the high practical relevance of this finding, especially for the above-mentioned areas of application, there are also consequences in basic research. “It turned out that another surprising property of the flow field of these solutions can be assigned to this molecular mechanism we showed: namely, the so-called ‘negative wake’ of the gas bubble,” says Dieter Bothe from the Analysis working group of the Department of Mathematics at TU Darmstadt. This is an area in the flow field below the bubble where the fluid normally “follows” the bubble at a low velocity. With polymeric liquids, however, it is the other way round: there, the movement of the liquid is oriented in the opposite direction to the movement of the bubble. This fluid movement is caused by the same tension that “pushes” the bubble. This understanding can lead to possibilities for controlling flow processes.

Facts, background information, dossiers

  • viscoelasticity

More about TU Graz

More about TU Darmstadt

  • News

    Protons are probably actually smaller than long thought

    A few years ago, a novel measurement technique showed that protons are probably smaller than had been assumed since the 1990s. This surprised the scientific community; some researchers even believed that the Standard Model of particle physics would have to be changed. Physicists at the Univ ... more

    A small molecule controls lung cancer

    In order for a tumour to grow, its cells need to communicate with one another. Disrupting this communication can help to fight the tumour. The research group headed by Dr. Meike Saul at Technical University of Darmstadt has discovered a mechanism that plays a key role in intercellular commu ... more

    New US and German collaboration aims to produce green hydrogen more efficiently

    Through a new award program, the U.S. National Science Foundation and the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) have joined forces to award the University of Illinois Urbana-Champaign and Technical University of Darmstadt a three-year $720,000 research grant ($50 ... more

  • q&more articles

    Insights

    Fuel cell technology is actually an “old hat”. The first fuel cell was developed by Sir William Grove in 1839; the first fuel cell stack was already introduced to the public in 1842 . Nevertheless, the innovative electro-chemical concept initially gathered dust in the drawer – it was defea ... more

    Rays of hope

    Tissue replacement – with and without silicon The fact that women have their breasts enhanced with silicon has very little to do with Tissue Engineering and a lot to do with material and waste management. Put aesthetics aside and imagine you were deaf (i.e. hearing impaired), dumb (i.e. ... more

    New Trends in Computer-Aided Drug Design

    Computer-Aided Drug design (CADD) is not new. The Journal of Computer-Aided Molecular Design (Springer) was founded in 1987, when computers in the worldwide top 500 were slower than today’s smart phones. This makes the field a quarter of a century old. Generally, scientific disciplines of t ... more

  • Authors

    Prof. Dr. Katja Schmitz

    Katja Schmitz, born in 1978, studied chemistry in Bonn and Oxford. After graduating in 2002, she completed her doctorate on peptides, peptoids and oligoamines as molecular transporters in the research group of Ute Schepers in the working group of Konrad Sandhoff at the University of Bonn. I ... more

    Dr. Christina Roth

    Christina Roth, born 1974 in Jugenheim/Bergstrasse (Germany), studied materials science in one of the first classes at the Technische Universität Darmstadt. From 1998 to 2002, she prepared her disser­tation in the special field of structural research under Prof. Hartmut Fuess. Subsequent to ... more

    Prof. Dr. Paul G. Layer

    Paul Layer born 1948 in Beutelsbach (near Stuttgart), studied Physics in Stuttgart from 1969 to 1973 and Nutritional Science in Hohenheim, graduating 1977-79 at the University of Constance under F. Hucho on the cholinergic receptor and cholinesterase. This was followed by a stay in the US b ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: