25-Mar-2022 - Friedrich-Schiller-Universität Jena

Catalytic hydrogen generation – without expensive precious metals

Researchers develop compact and cost-effective molecular photosystem for light-driven hydrogen generation

A research team from Friedrich Schiller University Jena has developed a molecular photosystem inspired by nature that generates hydrogen under visible light irradiation. In contrast to other existing systems of this type, it functions without the use of precious or heavy metals.

Low-cost and environmentally friendly

“What is special about our system is that it’s a relatively small and compact metal complex, which, however, doesn’t require any expensive or toxic metals, such as platinum or cadmium,” explains Prof. Wolfgang Weigand of Jena University’s Institute for Inorganic and Analytical Chemistry. “Here, the volume of hydrogen generation is about 10 times higher than in similar systems.”

The significance of this achievement is evidenced by the fact that the results have been published as a “Very Important Paper” in the internationally renowned journal “Angewandte Chemie”. No more than five per cent of all publications are accorded this status in the journal.

A model of scientific exchange

“Our system was inspired by nature,” says Weigand. “Some organisms can produce hydrogen with the help of certain enzymes, called ‘iron-iron hydrogenases’. That’s what we’re focusing on in our research. And in this work in particular, there was really wonderful synergy in the team,” he adds.

The research work was carried out to a great extent by Weigand’s doctoral candidate Philipp Buday and Buday’s former research student Chizuru Kasahara, in cooperation with the Jena research groups led by Stefanie Gräfe and Benjamin Dietzek-Ivanšić, and Ulm University.

“This collaboration was really effective,” explains Weigand. “It also shows very impressively how much science benefits from exchanges, especially as Ms Kasahara came to us through the Erasmus+ programme from Japan’s Saitama University and is now a doctoral candidate in my group.”

Basic research paves the way to “green” hydrogen

This work is a further step on the way to producing sustainable hydrogen, for example with the help of sunlight. “But it’s still basic research,” says Weigand. For example, this system does not currently work in water. “However, we’re currently working on this within the German Research Foundation’s Collaborative Research Centre 234 ‘CataLight’, to which the entire project belongs. Initial results already indicate that the volume of hydrogen production increases when the photosystem is incorporated into polymers. Here, we want to do further work with water-soluble alternatives in order to harness water as a solvent and source for the light-driven production of hydrogen.”

Facts, background information, dossiers

More about Uni Jena

  • News

    How the first biomolecules could have been formed

    The chemical precursors of present-day biomolecules could have formed not only in the deep sea at hydrothermal vents, but also in warm ponds on the Earth's surface. The chemical reactions that may have occurred in this “primordial soup” have now been reproduced in experiments by an internat ... more

    Fitness needs the right timing

    Life on Earth runs in 24-hour cycles. From tiny bacteria to human beings, organisms adapt to alterations of day and night. External factors, such as changes in light and temperature, are needed to entrain the clock. Many metabolic processes are controlled by the endogenous clock. Scientists ... more

    Turbo boost for materials research

    A new algorithm has been designed to help discover previously unknown material compounds. It was developed by a team from Martin Luther University Halle-Wittenberg (MLU), Friedrich Schiller University Jena and Lund University in Sweden. The researchers designed a form of artificial intellig ... more

  • q&more articles

    Effective drug navigation in sepsis

    Many drug candidates never reach clinical use due to their side effects. For example, inhibitors of phosphoinositide 3-kinase-γ, a signaling protein that plays an important role in infections, cannot be used because of their side effects on the immune response. more

    Genes on sugar

    The targeted transport of DNA and RNA using vectors (mostly made from synthetic polymers) in cell cultures has become part of routine practice in biological R&D – a fact highlighted by the multitude of commercial kits now available. To date, however, obstacles relating to use in patients ha ... more

    Highly-prized components

    The isolation of bioactive plant ingredients, essential oils or dyes and flavourings of plant origin requires costly and sophisticated procedures. Several applications do not actually require isolation of the individual components, however – their concentration is sufficient. Moreover, for ... more

  • Authors

    Prof. Dr. Ulrich S. Schubert

    Ulrich S. Schubert, born in 1969, is Chair (W3) for Organic and Macromolecular Chemistry at Friedrich Schiller University Jena, Germany. He studied chemistry at the Universities of Frankfurt and Bayreuth and subsequently received his PhD from the Universities of Bayreuth and South Florida, ... more

    Prof. Dr. Thomas Heinze

    Thomas Heinze, born in 1958, studied chemistry at FSU Jena. After receiving his doctorate there in 1989 and subsequent postdoc work at KU Leuven (Belgium), he completed his habilitation in 1997. In 2001, he accepted a professorship in Macromolecular Chemistry at the University of Wuppertal ... more

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer is a licensed pharmacist before obtaining her doctorate in pharmaceutical technology and biopharmacy from the Philipps University of Marburg in 1997. After a period spent at Texas Tech University Health Sciences Center (USA), she gained several years' experience as Head of Pr ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: