29-Mar-2022 - Rheinische Friedrich-Wilhelms-Universität Bonn

Study shows how bioactive substance inhibits important receptor

Results from the University of Bonn raise hope for new drugs against cancer and brain diseases

The A2A receptor regulates how vigorously the innate immune system attacks diseased cells. Researchers at the University of Bonn have now been able to show for the first time how an important inhibitor binds to the receptor. In the future, the results will facilitate the targeted search for molecules that give the innate immune system more punch. These could for instance be used in the fight against cancer, but also against brain diseases such as Alzheimer's or Parkinson's disease. The final version of the study has been published in the journal Angewandte Chemie International Edition.

Anyone who enjoys reading thrillers knows: Before thieves break into a mansion, they like to toss a juicy chop over the fence, in which they have hidden a few sleeping pills. When the watchdogs get down to their second dinner, they succumb to deep slumber shortly thereafter. The jewels of the lady of the house change hands much more unperturbed after that.

Tumor cells often proceed in a very similar way: They cast out sleeping pills that paralyze the immune system. More specifically, they surround themselves with a cloud of adenosine, an important endogenous messenger. In this way, they disable the body's own "killer cells", which would otherwise cause the cancer cells to die.

This is because the adenosine molecules bind to tiny antennae on the surface of the immune cells, the A2A receptors (the abbreviation stands for "type 2A adenosine receptors"). This knocks out the defensive troops, so to speak. Researchers around the globe are therefore looking for molecules that can block the A2A receptor and prevent the paralyzing effect of adenosine.

Bombardment with X-rays

"Our study should make this search a lot easier," explains Prof. Dr. Christa Müller of the Pharmaceutical Institute of the University of Bonn. "We have added novel variants of a known inhibitor, a substance called preladenant, to the A2A receptor. Then we created crystals from the receptor-inhibitor complexes - it's the first time in the world that this has been achieved with preladenant-like substances."

Crystallization made it possible to elucidate the structure of the complex. "To do this, we bombard the compound with X-rays," explains Tobias Claff, who performed the main part of the experiments. "The crystal diffracts the rays. The way it does this then allows us to deduce the spatial structure of the complex - right down to the arrangement of individual atoms and their interactions."

In this way, the researchers were able to show to which points of the A2A receptor preladenant binds. With this knowledge, it is now possible to specifically modify the inhibitor to give it better properties. In addition to having the strongest possible effect, drugs should for example not be broken down too quickly. They also need to be able to reach the place where they are supposed to do their work - in this case, the brain. "Our study will make it much easier to optimize the substance," Claff says with optimism.

A2A belongs to a group of receptors that regulate key functions in the body. They span the membrane of cells. The part of them that sits on the outside of the membrane serves as a sensor, receiving molecular signals like an antenna. When it does, it triggers specific reactions with its part that protrudes into the cell. This then activates certain genes, for example.

Dye bound to the inhibitory molecule

"These receptors are immensely important because of their central position," says Christa Müller, who is also a member of the Transdisciplinary Research Areas (TRA) "Building Blocks of Matter" and "Life and Health." "Many of them, however, are unfortunately relatively unstable. This is unfavorable for X-ray structural analyses - crystallization takes days, sometimes even weeks." The researchers therefore specifically modified the A2A receptor at a single point, making it considerably more stable.

Additionally, they succeeded in attaching a dye to the preladenant with a kind of molecular string. "This allows us to control where in the tissue preladenant attaches to the A2A receptor," Müller says. At the same time, the length and flexibility of the nanostring ensures that the inhibitor is not obstructed from binding to the receptor.

Both advances could also serve as models for work with other receptors that belong to the same group. "The methods we have developed in Bonn in recent years will allow us to elucidate the structure of such and other cell membrane proteins in the future," the pharmacist is convinced. "There aren't many research facilities that can do this kind of structural analysis of extremely complex molecules."

Participating institutions and funding:

In addition to the University of Bonn, the Centre for Structural Systems Biology (CSSB) and Forschungszentrum Jülich were involved. The study was funded by the German Research Foundation and the Federal Ministry of Education and Research.

Facts, background information, dossiers

  • receptors
  • immune system
  • cells
  • tumor cells
  • immune cells

More about Universität Bonn

  • News

    Moss repair team also works in humans

    If everything is to run smoothly in living cells, the genetic information must be correct. But unfortunately, errors in the DNA accumulate over time due to mutations. Land plants have developed a peculiar correction mode: they do not directly improve the errors in the genome, but rather ela ... more

    Covid-19: New energy for flagging immune cells

    In severe Covid-19 patients, the metabolism produces insufficient amounts of certain energy-rich compounds called ketone bodies. However, these energy carriers are needed by two important cell types in the immune system in order to fight the virus effectively. Perhaps this finding explains ... more

    Molecule boosts fat burning

    A study led by the University of Bonn has identified a molecule - the purine inosine - that boosts fat burning in brown adipocytes. The mechanism was discovered in mice, but probably exists in humans as well: If a transporter for inosine is less active, the mice remain significantly leaner ... more

  • q&more articles

    A colorful variety of reactions

    The continuing trend towards sustainability, naturalness and healthy nutrition is making plant-based food ingredients with biofunctional and technofunctional properties increasingly important. Polyphenols, synthesized by plants as secondary metabolites, possess the molecular characteristics ... more

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Prof. Dr. Andreas Schieber

    Andreas Schieber, born in 1966, studied food chemistry at the University of Stuttgart and received his doctorate in 1996 from the University of Hohenheim. After his second state examination at the Chemical and Veterinary Investigation Office in Stuttgart, he returned to the university in 19 ... more

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: