31-Mar-2022 - Ruhr-Universität Bochum

I was here first! This is how hepatitis C inhibits hepatitis E

A single protein from one virus can prevent infection with another virus in cell culture

Infections with hepatitis C and E are so common that, going only by statistics, many people should be infected with both viruses at the same time. However, only very few such cases have been reported. A research team from the Department of Molecular and Medical Virology at Ruhr-Universität Bochum (RUB) has a guess as to why this is the case: The researchers found that the viruses inhibit each other when they infect at the same time. The team headed by Thomas Burkard published their report in the journal “Cells” on 8 March 2022.

It is well known that co-infections with hepatitis viruses do exist. “However, the co-infection of hepatitis C and E has not yet been systematically researched,” says Thomas Burkard. “Even though the possibility always looms that a simultaneous infection with two viruses could perhaps be particularly dangerous.”

A single protein suppresses infection

In order to find out more about simultaneous infection with the hepatitis C (HCV) and hepatitis E virus (HEV), the researchers infected liver cells in cell culture with both pathogens in the first step. It turned out that HCV is able to suppress an infection with hepatitis E. The team wanted to find out why. “HCV consists of ten proteins,” explains Thomas Burkard. “By producing individual ones in excess, we were able to study their effect.” This allowed the researchers to find that a single viral protein – called NS3/4A – successfully suppressed the replication of hepatitis E viruses in cell culture. “It seemed that co-infection with both viruses was only possible to a very limited extent,” says Thomas Burkard.

Experiments in animal models, however, presented a different pattern: genetically modified mice that have a human liver could become infected with both viruses. However, the infections proceeded in different ways depending on which one the mice were exposed to first. If HEV was present first, HCV could not successfully infect the animals. If HCV was present first, the infection course with HEV was often delayed. “Here, HCV did not turn out to be as dominant as in cell culture,” says Thomas Burkard. In-depth analyses of the liver cells should now shed light on the underlying causes: “Perhaps we will only find islets that are infected with one or the other virus,” speculates the researcher. “In any case, it is clear that the two viruses affect each other.”

Facts, background information, dossiers

  • hepatitis
  • hepatitis C
  • hepatitis E
  • viruses

More about RUB

  • News

    Thriller in the bacterial kingdom

    Bacteria have a variety of survival strategies to ensure a sufficient food supply in their densely populated habitats. Certain species of bacteria kill microorganisms of another species, decompose their cells and absorb them as nutrients. The exact mechanism of this process is largely unkno ... more

    3D printed surfaces inspired by nature

    Scientists can use laser radiation to print tiny structures with high precision. This approach enables them to mimic the superpowers of animals and plants and makes them accessible for engineering applications. To survive in extreme habitats, many animals and plants have developed brilliant ... more

    How hepatitis E tricks the immune system

    Over three million people are infected with the hepatitis E virus every year. So far, no effective treatment is available. An international team has investigated which factors are important for the virus in the course of its replication cycle and how it manages to maintain the infection. Th ... more

  • q&more articles

    Customized ligands pave the way for new reaction pathways

    For the first time, an efficient catalyst for palladium-catalyzed C–C bonding between aryl chlorides and alkyl lithium compounds has been found. This reaction enables simpler synthesis routes for important products, such as pharmaceuticals, while avoiding much salt waste. more

    Light plus current: The formula for researching what happens to individual nanoparticles

    A combination of dark-field microscopy and electrochemistry can make individual nanoparticles in a liquid medium visible. The technique is suited to determine the activity of catalysts during their use. more

    Vibrational spectroscopy - Label-free imaging

    Spectroscopic methods are now granting us deep insights into biological systems at previously unattainable spatial and temporal resolutions. Complementing the already well-established fluorescence spectroscopy, the major potential of label-free vibrational spectroscopy has become clear in r ... more

  • Authors

    Henning Steinert

    Henning Steinert, born in 1993, studied chemistry at Carl-von-Ossietzky University in Oldenburg, where he researched, among other things, the activation of Si–H bonds on titanium complexes. He is currently working on his doctorate at the Ruhr-Universität Bochum, Chair of Inorganic Chemistry ... more

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, born in 1982, studied chemistry at Marburg and Würzburg universities and received her doctorate from the Technical University Dortmund in 2009. After a postdoctoral stay at the University of California in Berkeley, she headed an Emmy Noether junior research group ... more

    Kevin Wonner

    Kevin Wonner, born in 1995, studied chemistry with the focus on electrochemical nanoparticle characterization at the Ruhr University Bochum. He started his PhD in 2018 at the chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supported by the graduate school 2376. Hi ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: