03-May-2022 - Albert-Ludwigs-Universität Freiburg

New discoveries about the origin of the brain’s immune system

Significance for Alzheimer’s, multiple sclerosis and more

What gets into the brain and what doesn’t is strictly regulated. Researchers at the Faculty of Medicine at the University of Freiburg have now studied phagocytes that coat the blood vessels in the brain and reinforce the blood-brain barrier. As the scientists from the Institute of Neuropathology at the Medical Center – University of Freiburg together with an international research team have shown, these cells only mature fully after birth according to a defined step-by-step developmental program. Until now, it had been assumed that this process was completed during embryonic development. Their studies, which were published in the journal Nature on April 20, 2022, were initially carried out on genetically modified mouse lines and were confirmed on human samples. They are expected to provide important insights into the development and treatment of diseases of the brain.

“We were able to show that the immune cells we studied migrate from the cerebral membrane to the blood vessels in the brain shortly before birth and mature there. This process is probably not completed until weeks after birth and could partly explain why the brain is so vulnerable at the beginning of life,” says Prof. Dr. Marco Prinz, Medical Director of the Institute of Neuropathology at the Medical Center – University of Freiburg and head of the Collaborative Research Center/Transregio 167 - NeuroMac and member of the Cluster of Excellence CIBSS -Centre for Integrative Biological Signalling Studies at the University of Freiburg. “The late timing of the maturation of the phagocytes, also called macrophages, was very surprising to us, since the precursor cells are already present in the brain long before,” says Prinz. In addition, the scientists were able to show for the first time that the vessels, as structure-giving cells of the brain, send important signals for normal development of the brain’s macrophages.

The blood-brain barrier is formed by cells on the blood vessels of the brain. They control which substances can enter the brain and which cannot. This protects the brain from harmful substances and pathogens. The blood-brain barrier is particularly permeable in the case of infectious diseases, certain brain tumors and oxygen deficiency.

Significance for Alzheimer’s, multiple sclerosis and more

“In addition to the blood-brain barrier, the immune cells we studied control what can reach the brain cells from the blood, they eat pathogens and prevent excessive inflammation. They are also involved in the development of cancer, Alzheimer's disease and multiple sclerosis. Our findings could be important for a better understanding of these diseases and future therapies,” Prinz adds.

Color-coded cells and gene analyses Farbmarkierte Zellen und Gen-Analysen

For their study, the researchers led by the two first authors Dr. Takahiro Masuda from Kyushu University, Japan, and Dr. Lukas Amann from the Faculty of Medicine at the University of Freiburg used several newly established mouse lines. With these, different types of brain macrophages and their progenitor cells could be specifically labeled for the first time and later found in the different brain regions using high-resolution microscopy. In addition, they examined the gene activity of individual cells and thus determined their degree of maturity. “We were also able to confirm the data on human brains. This gives us a much deeper understanding of the timing and molecular mechanisms in the development of the cells. This knowledge can now be used to explore new and more specific therapeutic approaches for brain diseases,” says biologist Dr. Lukas Amann, who works at the Institute of Neuropathology at the Medica Center – University of Freiburg.

Researchers from Freiburg, Berlin, Hannover, Leipzig, Japan, Sweden, France and the USA were involved in the study.

Facts, background information, dossiers

  • immune cells
  • brain
  • blood vessels
  • blood-brain barrier

More about Uni Freiburg

  • News

    Molecular structure of one of the most important receptors in the immune system unraveled

    The surface of B cells is covered with antigen receptors with which they recognize invading pathogens such as bacteria and viruses. When a B cell receptor binds to an antigen, that is, to a foreign structure, the B cell is activated and triggers the production of antibodies. Antibodies are ... more

    A molecular machine at work

    The greenhouse gas nitrous oxide (N2O) is produced as a by-product of industrial processes and through the use of fertilizers in agriculture. It is making a steadily growing contribution to climate change and the depletion of the ozone layer. It is so chemically unreactive that it remains i ... more

    Lung Tissue from the Lab

    Laboratory studies of lung tissue usually require the removal of large amounts of human or animal tissue. Now scientists from the University of Freiburg’s Faculty of Medicine have succeeded in collaboration with American researchers in generating tiny quantities of lung tissue, so-called or ... more

  • q&more articles

    Modular biofactories at the cellular level

    Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical macromolecules. All molecules are composed of atoms, after all. Why make an artificial distinction? Why not ... more

    Bookmarks

    From a pluripotent stem cell a muscle cell or a liver cell can form, which despite their difference in appearance, are genetically identical. From one and the same genotype, therefore, the most diverse phenotypes can be formed – epigenetics is making it possible! It is a very exciting area ... more

  • Authors

    Dr. Stefan Schiller

    Stefan M. Schiller studied chemistry at Gießen (Mainz, Germany) and the University of Massachusetts, majoring in macromolecular chemistry and biochemistry. For his doctorate in biomimetic membrane systems he worked till 2003 at the Max Planck Institute for Polymer Research in Mainz. Researc ... more

    Julia M. Wagner

    Julia M. Wagner studied pharmacy in Freiburg (licensure 2008). Since 2008 she is a PhD student and research assistant in the group of Professor Dr. M. Jung. Her research focuses ­on the cellular effects of histone deacetylase inhibitors. more

    Prof. Dr. Manfred Jung

    Manfred Jung is a graduate of the University of Marburg, where he studied pharmacy (licensure  1990) and obtained his doctorate in pharmaceutical chemistry with Prof. Dr. W. Hanefeld. After a post-doctorate at the University of Ottawa, Canada, he began with independent research in 1994 ­at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: