16-May-2022 - Universität Innsbruck

When quantum particles fly like bees

Quantum simulator provides insights into the dynamics of complex quantum systems

A quantum system consisting of only 51 charged atoms can assume more than two quadrillion different states. Calculating the system's behavior is a piece of cake for a quantum simulator. Yet even with today's supercomputers it is almost impossible to verify the result. A research team from the University of Innsbruck and the Technical University of Munich (TUM) has now shown how these systems can be described using equations from the 18th century.

At first glance, a system consisting of 51 ions may appear simple. But even if these charged atoms can only assume two different states, there will be more than two quadrillion (1015) different configurations which the system can realize.

The behavior of such a system can therefore hardly be calculated with conventional computers. Especially since once an excitation has been introduced into the system, it can propagate in leaps and bounds. It follows a statistic known as Lévy flight.

A characteristic of the movement of such a quantum particle is that, in addition to the smaller jumps, also significantly larger jumps occur. This phenomenon can also be observed in the flight of bees and in unusual fierce movements in the stock market.

Simulating quantum dynamics: A classically hard problem

While simulating the dynamics of a complex quantum system is a very hard problem even for super computers, the task is a piece of cake for quantum simulators. But how are you supposed to check the results of a quantum simulator when you cannot recalculate them?

Theoretical predictions suggested that it might be possible to represent at least the long-term behavior of such systems with equations as those developed by the Bernoulli brothers in the 18th century to describe the behavior of fluids.

To test this hypothesis, the research team used a quantum system that simulates the dynamics of quantum magnets. With this they were able to show that after an initial regime in which quantum-mechanical effects dominate, the system can be described by equations known from fluid dynamics.

Furthermore, they showed that the very same Lévy flight statistics which describes the search strategies of bees also describes the fluid-dynamics in this quantum system.

Trapped ions as a platform for controlled simulations

The quantum simulator was built at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences on the campus of the University of Innsbruck, Austria. "Our system effectively simulates a quantum magnet by representing the north and south poles of an elementary magnet by two energy levels of the ions," says IQOQI Innsbruck scientist Manoj Joshi.

"Our biggest technical advance was that we succeeded in controlling each one of the 51 ions individually," observes Manoj Joshi. "As a result, we were able to investigate the dynamics of different initial states, which was necessary to demonstrate the emergence of the fluid dynamics."

"While the number of qubits and the stability of the quantum states is currently still very limited, there are problems for which we can already now use the enormous computing power of quantum simulators," says Michael Knap, Professor for Collective Quantum Dynamics at the Technical University of Munich.

"Near-term quantum simulators and quantum computers will be ideal platforms to explore the dynamics of complex quantum systems," explains Michael Knap. "Now we know that after a certain point in time these systems follow the laws of classical fluid dynamics. Any strong deviation from that is an indication that the simulator is not working properly."

Facts, background information, dossiers

  • quantum systems
  • atoms
  • quantum simulation
  • quantum dynamics
  • quantum magnets

More about Universität Innsbruck

  • News

    Quantum sensors: Measuring even more precisely

    Two teams of physicists led by Peter Zoller and Thomas Monz at the University of Innsbruck, Austria, have designed the first programmable quantum sensor, and tested it in the laboratory. To do so they applied techniques from quantum information processing to a measurement problem. The innov ... more

    How particulate matter arises from pollutant gases

    When winter smog takes over Asian mega-cities, more particulate matter is measured in the streets than expected. An international team, including researchers from Goethe University Frankfurt, as well as the universities in Vienna and Innsbruck, has now discovered that nitric acid and ammoni ... more

    Creative support in the laboratory

    On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum o ... more

  • q&more articles

    Knowledge instead of ignorance

    Biology is naturally complex, and even the results of the simplest biochemical experiments are afflicted with experimental noise that cannot be ignored. However, biochemical measurements are the backbone of modern pharmaceutical research. If the experimental uncertainty is underestimated, b ... more

  • Authors

    Prof. Dr. Christian Kramer

    born in 1980, studied Molecular Sciences in Erlangen and Zürich. He did his doctorate between 2007–2009 at the University of Erlangen in close collaboration with Boehringer-Ingelheim/Biberach, developing novel QSAR and QSPR methods for the statistical prediction of physicochemical and bioch ... more

More about TUM

  • News

    First electric nanomotor made from DNA material

    A research team led by the Technical University of Munich (TUM) has succeeded for the first time in producing a molecular electric motor using the DNA origami method. The tiny machine made of genetic material self-assembles and converts electrical energy into kinetic energy. The new nanomot ... more

    Mass spectrometry-based draft of the mouse proteome

    Proteins control and organize almost every aspect of life. The totality of all proteins in a living organism, a tissue or a cell is called the proteome. Using mass spectrometry, researchers at the Technical University of Munich (TUM) characterize the proteome, or protein complement of the g ... more

    Mini-fuel cell generates electricity using the body's sugar

    Glucose is the most important energy source in the human body. Scientists at the Technical University of Munich (TUM) and the Massachusetts Institute of Technology (MIT) now want to use the body's sugar as an energy source for medicinal implants. They have developed a glucose fuel cell whic ... more

  • q&more articles

    Vital wheat gluten, a protein with potential

    For almost every one of the 17 goals that the 2030 Agenda for Sustainable Development sets out, food and its value chain plays an important role [1]. With this agenda, the United Nations has created a global framework for action that addresses all social players. more

    Biobased raw material flows of the future

    Anthropogenic climate change and the rising world population, in combination with increasing urbanization, poses global challenges to our societies that can only be solved by technological advancement. The direct biotechnological use of greenhouse gases, including residual biomass flows fro ... more

    Taste and aroma boost in the mouth

    The food trend towards healthy snacks is continuing. Snacks made from freeze-dried fruit meet consumer expectations of modern and high-quality food. However, freeze drying of whole fruits requires long drying times and substantially reduces sensorial quality, which is unappealing to consumers. more

  • Authors

    Prof. Dr. Thomas Becker

    Thomas Becker, born in 1965, studied Technology and Biotechnology of Food at the Technical University of Munich (TUM). He then worked as a project engineer at the company Geo-Konzept from 1992 to 1993. In 1995, he received his PhD from the TUM. From 1996 to 2004 he was Deputy Head of Depart ... more

    Monika C. Wehrli

    Monika Wehrli, born in 1994, graduated from the ETH Zurich with a major in food process engineering. Since 2018 she has been working as a researcher at the Technical University of Munich, Germany, at the Chair of Brewing and Beverage Technology, where she pursues her doctorate in the field ... more

    Prof. Dr. Thomas Brück

    Thomas Brück, born in 1972, obtained his B.Sc. in chemistry, biochemistry and management science from Keele University, Stoke on Trent. Additionally, he holds an M.Sc. in molecular medicine from the same institution. In 2002, Thomas obtained his Ph.D. in Protein Biochemistry from Imperial C ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: