27-May-2022 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

New biobattery for hydrogen storage

Microbiologists has succeeded in using bacteria for the controlled storage and release of hydrogen

The fight against climate change is making the search for carbon-neutral energy sources increasingly urgent. Green hydrogen, which is produced from water with the help of renewable energies such as wind or solar power, is one of the solutions on which hopes are pinned. However, transporting and storing the highly explosive gas is difficult, and researchers worldwide are looking for chemical and biological solutions. A team of microbiologists from Goethe University Frankfurt has found an enzyme in bacteria that live in the absence of air and bind hydrogen directly to CO2, in this way producing formic acid. The process is completely reversible – a basic requirement for hydrogen storage. These acetogenic bacteria, which are found, for example, in the deep sea, feed on carbon dioxide, which they metabolise to formic acid with the aid of hydrogen. Normally, however, this formic acid is just an intermediate product of their metabolism and further digested into acetic acid and ethanol. But the team led by Professor Volker Müller, head of the Department of Molecular Microbiology and Bioenergetics, has adapted the bacteria in such a way that it is possible not only to stop this process at the formic acid stage but also to reverse it. The basic principle has already been patented since 2013.

“The measured rates of CO2 reduction to formic acid and back are the highest ever measured and many times greater than with other biological or chemical catalysts; in addition, and unlike chemical catalysts, the bacteria do not require rare metals or extreme conditions for the reaction, such as high temperatures and high pressures, but instead do the job at 30°C and normal pressure,” reports Müller. The group now has a new success to report: the development of a biobattery for hydrogen storage with the help of the same bacteria.

For municipal or domestic hydrogen storage, a system is desirable where the bacteria first store hydrogen and then release it again in one and the same bioreactor and as stably as possible over a long period of time. Fabian Schwarz, who wrote his doctoral thesis on this topic at Professor Müller’s laboratory, has succeeded in developing such a bioreactor. He fed the bacteria hydrogen for eight hours and then put them on a hydrogen diet during a 16-hour phase overnight. The bacteria then released all the hydrogen again. It was possible to eliminate the unwanted formation of acetic acid with the help of genetic engineering processes. “The system ran extremely stably for at least two weeks,” explains Fabian Schwarz, who is pleased that this work has been accepted for publication in “Joule”, a prestigious journal for chemical and physical process engineering. “That biologists publish in this important journal is somewhat unusual,” says Schwarz.

Volker Müller had already studied the properties of these special bacteria in his doctoral thesis – and spent many years conducting fundamental research on them. “I was interested in how these first organisms organised their life processes and how they managed to grow in the absence of air with simple gases such as hydrogen and carbon dioxide,” he explains. As a result of climate change, his research has acquired a new, application-oriented dimension. Surprisingly for many engineers, biology can produce by all means practicable solutions, he says.

Facts, background information, dossiers

More about Uni Frankfurt am Main

  • News

    Frederick W. Alt and David G. Schatz to be awarded the 2023 Paul Ehrlich and Ludwig Darmstaedter Prize

    Immunologists Frederick W. Alt (73) of Harvard Medical School and David G. Schatz (64) of Yale School of Medicine are to receive the 2023 Paul Ehrlich and Ludwig Darmstaedter Prize, as the Scientific Council of the Paul Ehrlich Foundation announced. The two researchers are being acknowledge ... more

    How do killer T cells know where danger is coming from?

    How do killer T cells recognise cells in the body that have been infected by viruses? Matter foreign to the body is presented on the surface of these cells as antigens that act as a kind of road sign. A network of accessory proteins – the chaperones – ensure that this sign retains its stabi ... more

    Laboratory study: effect of antibodies against omicron variants BA.1 and BA.2 wears off quickly

    The omicron variants BA.1 and BA.2 of the SARS-CoV-2 virus, which are dominant from about December to April, can undermine the protection against infection offered by vaccinations or survived infections after only three months. This is shown by a study from Frankfurt under the leadership of ... more

  • q&more articles

    From feast to famine and back – no problem for bacteria

    Bacteria are true survivors. In the course of evolution, they have developed numerous strategies to adapt to rapidly changing, uncertain environmental conditions. Their metabolism is much more sophisticated than that of human beings. Within minutes they can regulate their gene expression an ... more

    Why biosimilars and not biogenerics?

    Medicines produced using genetic techniques have existed since 2006, called “similar biological medicinal products” or “biosimilars”. Until a year ago, this was a fairly low-profile group, even in expert circles. This has all changed now, however, with the recent licensing of the first bios ... more

    Paradigm shift

    What would medicine be without drugs? But are these drugs being used optimally today? Not at all, as we now know thanks to the findings of molecular medicine. Because for the use of these drugs, it is important to observe two aspects: the disease and the patient. Only slowly is it becom ... more

  • Authors

    Prof. Dr. Claudia Büchel

    Claudia Büchel, born in 1962, studied biology at the University of Mainz, where she also received her doctorate and, in 2001, the qualification to teach plant physiology. After a postdoctoral research period at the Biological Research Centre, Szeged, she worked for four years as a research ... more

    Prof. Dr. Jörg Soppa

    Jörg Soppa, born in 1958, studied biochemistry in Tübingen and then went on to do his doctorate at the Max Planck Institute of Biochemistry in Martinsried near Munich. In 1990 he established his own research group there and held courses at the Institute of Genetics and Microbiology of Munic ... more

    Prof. Dr. Heinfried H. Radeke

    Heinfried H. Radeke studied medicine at the Hannover Medical School (MHH) and received his medical license in 1985. His Ph.D. thesis was recognized as the best research dissertation of 1986. After two years as an assistant physician at the Göttingen University Hospital, he began his career ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: