31-May-2022 - Washington University in St. Louis

Lew lab sheds new light on cell membranes

Researchers can now image cells, motions of molecules in 6D

Research from the lab of Matthew Lew at Washington University in St. Louis offers entirely new ways to see the very small.

The research — two papers by PhD students at the McKelvey School of Engineering — was published in the journals Optica and Nano Letters.

They have developed novel hardware and algorithms that allow them to visualize the building blocks of the biological world beyond three dimensions in a way that, until now, wasn’t feasible. After all, cells are 3D objects and full of “stuff” — molecules — that moves around, rotates, spins and tumbles to drive life itself.

Like traditional microscopes, the work of two PhD students in the Lew lab, Tingting Wu and Oumeng Zhang, uses light to peer into the microscopic world — but their innovations are anything but traditional. Currently, when people use light in imaging, they are likely interested in how bright that light is or what color it is. But light has other properties, including polarization.

“Oumeng’s work twists the polarization of light,” said Lew, assistant professor in the Preston M. Green Department of Electrical & Systems Engineering. “This way, you can see both how things translate (move in straight lines) and rotate at the same time” — something traditional imaging doesn’t do.

“The development of new technology and the capability to see things we previously couldn’t see is exciting,” Zhang said. This unique capability to track both rotation and position at the same time gives him unique insights into how biological materials — human cells and pathogens, for instance — interact.

Wu’s research also provides a new way to image cell membranes and, in a way, to see inside of them. Using fluorescent tracer molecules, she maps how the tracers interact with fat and cholesterol molecules in the membrane, determining how the lipids are arranged and organized.

“Any cell membrane, any nucleus, anything in the cell is a 3D structure,” she said. “This helps us probe the full picture of a biological system. This enables us, for any biological sample, to see beyond three dimensions — we see the 3D structure plus three dimensions of molecular orientation, giving us 6D images.”

The researchers developed computational imaging technology, which synergizes software and hardware together, to successfully see the previously unseeable.

“That’s part of the innovation,” Lew said. “Traditionally, biological imaging labs have been tied down to whatever commercial manufacturers are making. But if we engineer things differently, we can do so much more.”

Facts, background information, dossiers

  • cell membranes
  • cells
  • polarization
  • imaging

More about Washington University in St. Louis

  • News

    No more trial-and-error when choosing an electrolyte for metal-air batteries

    Metal-air batteries have been pursued as a successor to lithium-ion batteries due to their exceptional gravimetric energy densities. They could potentially enable electric cars to travel a thousand miles or more on a single charge. A promising new member of the alkali-metal-air battery fami ... more

    High-powered fuel cell boosts electric-powered submersibles, drones

    The transportation industry is one of the largest consumers of energy in the U.S. economy with increasing demand to make it cleaner and more efficient. While more people are using electric cars, designing electric-powered planes, ships and submarines is much harder due to power and energy r ... more

    New fuel-delivery route for cells identified

    Scientists at Washington University School of Medicine in St. Louis have identified a previously unknown route for cellular fuel delivery, a finding that could shed light on the process of aging and the chronic diseases that often accompany it. With age, cells gradually lose their ability t ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: