02-Jun-2022 - Universität Bayreuth

New method for the technological use of 2D nanomaterials

Nanosheets are finely structured two-dimensional materials and have great potential for innovation. They are fixed on top of each other in layered crystals, and must first be separated from each other so that they can be used, for example, to filter gas mixtures or for efficient gas barriers. A research team at the University of Bayreuth has now developed a gentle, environmentally-friendly process for this difficult process of delamination that can even be used on an industrial scale. This is the first time that a crystal from the technologically attractive group of zeolites has been made usable for a broad field of potential applications.

The delamination process developed in Bayreuth under the direction of Prof. Dr. Josef Breu is characterised by the fact that the structures of the nanosheets isolated from each other remain undamaged. It also has the advantage that it can be used at normal room temperature. The researchers present their results in detail in "Science Advances".

The two-dimensional nanosheets, which lie on top of each other in layered crystals, are held together by electrostatic forces. In order for them to be used for technological applications, the electrostatic forces must be overcome, and the nanosheets detached from each other. A method particularly suitable for this is osmotic swelling, in which the nanosheets are forced apart by water and the molecules and ions dissolved in it. So far, however, it has only been possible to apply it to a few types of crystals, including some clay minerals, titanates, and niobates. For the group of zeolites, however, whose nanosheets are highly interesting for the production of functional membranes due to their silicate-containing fine structures, the mechanism of osmotic swelling did not seem to be applicable so far.

The Bayreuth research team has now, for the first time in interdisciplinary collaboration, found a way to use osmotic swelling for the gentle separation of Ilerite crystals, which belong to the group of zeolites. In the process, large sugar molecules are first inserted into the narrow spaces between the nanosheets. Subsequently, the nanosheets, which are stacked on top of each other and structurally aligned, are separated by water. In the process, their spacing becomes considerably larger. Now the nanosheets can be pushed further apart horizontally in different directions: Upon subsequent drying, a solid surface is created that is composed of many nanosheets. These are stacked like playing cards, overlapping only at the edges and leaving only a few gaps. The diameter of the individual nanosheets is around 9,000 times greater than their thickness.

This now opens up the possibility of fixing a larger number of such surfaces on top of each other and building up new layered materials. The point of this process is that the nanostructures of the surfaces in the new material are offset from each other. Consequently, their gaps are not exactly on top of each other, so that molecules, ions, or even light signals cannot penetrate the new material directly. This labyrinthine overall structure enables a wide range of potential applications – be it in packaging used to keep food fresh, in components for optoelectronics, and possibly even in batteries.

Facts, background information, dossiers

More about Uni Bayreuth

  • News

    A new peptide system for the targeted transport of molecules into living mammalian cells

    A novel peptide developed at the Universities of Bayreuth and Bristol is eminently suited for the targeted transport of molecules, for example of active substances and dyes, into the cells of mammals. The peptide is characterized by a dual function: It can enter the cell from the outside an ... more

    New spectroscopic insights into hydrogen bonds

    Hydrogen bonds are of fundamental interest in materials science, physics and chemistry. An international team including scientists from the University of Bayreuth has now achieved surprising insights into the formation of hydrogen bonds using a novel method that enables the application of N ... more

    Nanoplastic particles love company

    Polyethylene, a plastic that is both cheap and easy to process, accounts for nearly one-third of the world’s plastic waste. An interdisciplinary team from the University of Bayreuth has investigated the progressive degradation of polyethylene in the environment for the first time. Although ... more

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Prof. Dr. Stephan Clemens

    Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thal ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: