15-Jun-2022 - Helmholtz-Zentrum für Infektionsforschung GmbH

New “decision aid” for CRISPR immune responses

Scientists show that target RNA levels influence defense against invaders

Friend or foe? Immune systems constantly face this question. They must recognize and clear foreign invaders without eliciting autoimmunity. Prokaryotic CRISPR-Cas systems recognize invaders based on genetic sequence. But what happens if the host genome shares the same sequences? A research team of the Helmholtz Institute in Würzburg in cooperation with the North Carolina State University (USA) has now discovered a control mechanism exhibited by CRISPR-Cas systems that use Cas13 nucleases: These systems only trigger an extensive immune response if the concentration of the target RNA exceeds a certain threshold. This discovery opens new opportunities for the use of CRISPR-Cas13 in the treatment of hereditary and infectious diseases. The scientists now published their findings in the journal “Cell Host & Microbe”.

Distinguishing self from non-self poses a major challenge for immune systems. Failure to recognize an attacker exposes the host to a potentially fatal infection, while erroneous recognition of the host itself can trigger an autoimmune response. “In order to treat infectious and autoimmune diseases, it is critical to understand how immune systems make these decisions,“ says Chase Beisel. Beisel heads the RNA Synthetic Biology Department at the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg, a site of the Helmholtz Centre for Infection Research (HZI) in Braunschweig in cooperation with the Julius-Maximilians-Universität (JMU) Würzburg, and is the corresponding author of the study.

Three golden rules

CRISPR-Cas defense systems, which are present in bacteria and protect them from viral attacks, regularly have to decide whether or not to trigger an immune response. In systems that rely on Cas13 nucleases, the immune response manifests through widespread ribonucleic acid (RNA) degradation, which causes the cell to go dormant. The invading virus cannot replicate in this environment, restricting viral spread to other bacteria. “Up to now, it was assumed that CRISPR-Cas13 systems are triggered when two criteria are met: a match between a target RNA and the system's guide RNA and the presence of an additional flanking sequence,” Elena Vialetto, PhD student at the HIRI and first author of the study, explains. “The fact that the concentration of the target RNA also plays an important role was completely unexpected.” This additional “decision aid” allows the cells to differentiate between an acute and potentially lethal infection and a benign infection that can be ignored. “Cells can therefore decide if an infection poses a threat,” Vialetto summarizes. According to Beisel, this is important because some infections can actually be beneficial to a bacterium. Certain invaders, for example, contain antibiotic resistance genes and only integrate into the bacterial genome without killing the cell.

New possibilities for therapies and gene silencing

The nuclease Cas13 has the potential to be used in the future to fight viral diseases or to silence adverse genes. “It has always been a curiosity that Cas13 induces dormancy in bacteria through widespread RNA cleavage, yet only cleaves the target RNA in human cells. Our work indicates that RNA levels could help explain this difference,” Vialetto says. “This provides an extra factor to consider when applying Cas13 to gene silencing,” Beisel adds. The findings of the research team provide a better understanding of the nuclease, laying the groundwork for new innovative therapeutics.

As a next step, the researchers plan to investigate how this threshold extends to other CRISPR-Cas systems that recognize RNA. According to Beisel, this opens up future research opportunities: “There is a whole class of systems, called type III systems, that recognize RNA but rely on other proteins for collateral RNA or DNA cleavage. Here, RNA levels could also have a big impact on the induction of an immune response and on how these systems differentiate between benign and dangerous invaders.”

Facts, background information, dossiers

  • CRISPR
  • immune system
  • RNA

More about Helmholtz-Zentrum für Infektionsforschung

  • News

    A precision cut for the CRISPR-Cas genetic scissors

    The nuclease Cas13b associated with CRISPR defense systems—also known as genetic scissors—has the potential to be used in the future in hereditary diseases to silence adverse genes. In the fight against infections, it is also being researched as an antiviral agent, as Cas13b can target the ... more

    A boost for CRISPR research

    For many diseases, the tools of medicine are reaching their limits. CRISPR technologies open new avenues for diagnostics and therapies, although the natural source of CRISPR remains largely untapped. Scientists from the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg ... more

    Infectious agent offers protection against liver cancer

    Liver cancer is the third most common cause of cancer-related deaths worldwide. So far, the treatment options for two types of liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), have been inadequate, while the number of new cases has been rising. A study by researche ... more

  • q&more articles

    Antibiotic resistance

    Do you also find it tiresome and disagreeable when tasks long-since done and dusted suddenly resurface, appear never to have been finished in the first place and now need your urgent attention? In drug research, the topic of antibiotics is a shining – and simultaneously appalling – example ... more

  • Authors

    Prof. Dr. Mark Brönstrup

    studied Chemistry at Philipps University Marburg (Germany) and London’s Imperial College. He obtained his doctorate in organic chemistry in 1999 from TU Berlin. From 2000 to 2013, he worked at the pharmaceutical company Sanofi in Frankfurt, first as head of a mass spectrometry lab before mo ... more

More about Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI)

  • News

    A boost for CRISPR research

    For many diseases, the tools of medicine are reaching their limits. CRISPR technologies open new avenues for diagnostics and therapies, although the natural source of CRISPR remains largely untapped. Scientists from the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg ... more

    Researchers visualize the battle between virus and host cells at the single-cell level

    Cells are equipped with multiple defense mechanisms to fight off intruders. Genes encode the building blocks of the response that must be activated during an enemy attack in an ordered manner. Scientists at the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg, one of ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: