29-Jun-2022 - Technische Universität Wien

Climate protection: CO₂ turned into methanol

TU Wien has developed a chemical process that uses special catalysts to turn climate-damaging carbon dioxide into valuable methanol

For reasons of climate protection, carbon dioxide must not be released into the atmosphere. Wherever the formation of carbon dioxide cannot be prevented, it should be captured and converted into other substances.

The best possible solution is creating substances that have value and can be sold. A new method for this has now been developed at TU Wien (Vienna): With the help of a special catalyst material made of sulfur and molybdenum, liquid methanol is produced from CO2. The new technology has already been patented, and together with industrial partners the process is now to be scaled up to industrial scale.

Profit from waste gas

It is precisely where carbon dioxide occurs in maximum concentration - for example directly in the exhaust gas stream of large industrial plants - that it can be used most efficiently. The idea of converting carbon dioxide into valuable products is not new. However, it is a difficult and complex task. Sometimes CO2 has to be enriched and separated beforehand, which causes additional costs and energy input.

"To convert carbon dioxide, catalysts based on copper have often been used so far," says Prof. Karin Föttinger from the Institute of Materials Chemistry at TU Wien. "However, they have the major disadvantage that they are not robust. If there are certain other substances in the exhaust gas stream besides carbon dioxide, for example sulfur, the catalyst quickly loses its activity. It is said that the catalyst is poisoned."

Karin Föttinger and her research group therefore set out to find a better material. "If you want to use such methods not only in the laboratory but also on a large scale in industry, then you need a catalyst that is perhaps a little less active, but robust, durable and reliable," Föttinger explains. "You want to be able to process quite ordinary industrial waste gases without pre-treatment."

The winning formula: Sulfur and molybdenum

The TU Wien research team was able to show that catalysts based on sulfur and molybdenum fulfil these requirements. Special additional elements, such as manganese, ensure that carbon dioxide, which is actually very unreactive, is activated and converted. By choosing such additional elements, the properties of the catalysts can be precisely adapted to the desired area of application. In this way, methanol can now be produced from waste gas containing CO2.

"Methanol is an attractive product. It is liquid at room temperature, so it can be stored without any problems. It is needed in industry; up to now it has normally been produced from fossil raw materials," says Karin Föttinger. "But it is also possible to use our catalysts to produce other molecules, such as higher alcohols. We are currently still working on figuring out exactly how best to choose parameters like pressure and temperature to produce different products."

The method has now been patented, and it will now be scaled up to industrial scale in collaboration with partner companies. "We are already working with companies, and at the same time we are looking for other possible collaborations," says Karin Föttinger. In this way, the novel catalysts should make an important contribution to making industry climate neutral and closing material cycles.

More about TU Wien

  • News

    Three Eyes See More than Two - monitoring a catalytic reaction with three different microscopies under exactly the same conditions in real time

    One has to look very closely to exactly understand what processes take place on the surfaces of catalysts. Solid catalysts are often finely structured materials made of tiny crystals. There are various microscopies to monitor chemical processes on such surfaces – they use, for example, ultr ... more

    Miniaturized Lab-on-a-Chip for real-time Chemical Analysis of Liquids

    An infrared sensor has been developed at TU Wien (Vienna) that analyses the content of liquids within the fraction of a second. In analytical chemistry, it is often necessary to accurately monitor the concentration change of certain substances in liquids on a time scale of seconds. Especial ... more

    A Molecule of Light and Matter

    A very special bonding state between atoms has been created in the laboratory for the first time: With a laser beam, atoms can be polarised so that they are positively charged on one side and negatively charged on the other. This makes them attract each other creating a very special bonding ... more

  • q&more articles

    The search for APIs in the genome of fungi

    Fungi hold enormous potential to discover new active pharmaceutical ingredients (APIs) and valuable substances, for example antibiotics, pigments and raw materials for biological plastics. While conventional discovery methods are reaching their limits, recent developments in bioinformatics ... more

    Organs-on-a-Chip

    The aim of personalized medicine (or precision medicine) is to take patients’ personal features into consideration as much as possible for their medical treatment, thereby going beyond the functional diagnosis of the disease. A promising concept that is gaining ever more attention and showi ... more

  • Authors

    Dr. Christian Derntl

    Christian Derntl, born in 1983, completed his diploma studies in microbiology and immunology at the University of Vienna. In 2014, he completed his PhD study in technical chemistry with distinction at TU Wien. The topic of his thesis was the regulation of cellulases in the fungus Trichoderm ... more

    Sarah Spitz

    Sarah Spitz, born in 1993, studied biotechnology at the University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, graduating with an engineering diploma degree. While studying, she was employed for two years as a research assistant at the Department of Biotechnology (DBT) ... more

    Prof. Dr. Peter Ertl

    Peter Ertl, born in 1970, studied food and biotechnology at the University of Natural Resources and Applied Life Sciences, Vienna. He obtained a PhD in chemistry from the University of Waterloo, Canada, and subsequently spent several years as a postdoc at the University of California at Ber ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: