07-Jul-2022 - Rheinische Friedrich-Wilhelms-Universität Bonn

Molecule boosts fat burning

Study identifies a new signaling molecule that increases the energy consumption of brown fat cells

A study led by the University of Bonn has identified a molecule - the purine inosine - that boosts fat burning in brown adipocytes. The mechanism was discovered in mice, but probably exists in humans as well: If a transporter for inosine is less active, the mice remain significantly leaner despite a high-fat diet. The study, which also involved researchers from the University of Leipzig and the University Medical Center Hamburg-Eppendorf, has now been published in the journal Nature.

Normally, fat cells store energy. In brown fat cells, however, energy is dissipated as heat - brown fat thus serves as a biological heater. Most mammals therefore have this mechanism. In humans it keeps newborns warm, in human adults, brown fat activation positively correlates with cardio-metabolic health.

"Nowadays, however, we're toasty warm even in winter," explains Prof. Dr. Alexander Pfeifer from the Institute of Pharmacology and Toxicology at the University of Bonn. "So our body's own furnaces are hardly needed anymore." At the same time, we are eating an increasingly energy-dense diet and are also moving far less than our ancestors. These three factors are poison for brown fat cells: They gradually cease to function and eventually even die. On the other hand, the number of severely overweight people worldwide continues to increase. "Research groups around the world are therefore looking for substances that stimulate brown fat and thus increase fat burning," says Pfeifer.

Dying fat cells boost energy combustion of their neighbors

Together with a group of colleagues, the team at the University of Bonn has now identified a key molecule named inosine that is capable of burning fat. "It is known that dying cells release a mix of messenger molecules that influence the function of their neighbors," explains Dr. Birte Niemann from Pfeifer's research group. Together with her colleague Dr. Saskia Haufs-Brusberg, she planned and conducted the central experiments of the study. "We wanted to know if this mechanism also exists in brown fat."

The researchers therefore studied brown fat cells subjected to severe stress, so that the cells were virtually dying. "We found that they secrete the purine inosine in large quantities," Niemann says. More interesting, however, was how intact brown fat cells responded to the molecular call for help: They were activated by inosine (or simply by dying cells in their vicinity). Inosine thus fanned the furnace inside them. White fat cells also converted to their brown siblings. Mice fed a high-energy diet and treated with inosine at the same time remained leaner compared to control animals and were protected from diabetes.

The inosine transporter seems to play an important role in this context: This protein in the cell membrane transports inosine into the cell, thus lowering the extracellular concentration. Therefore, inosine can no longer exert its combustion-promoting effect.

Drug inhibits the inosine transporter

"There is a drug that was actually developed for coagulation disorders, but also inhibits the inosine transporter," says Pfeifer, who is also a member of the Transdisciplinary Research Areas "Life and Health" and "Sustainable Futures" at the University of Bonn. "We gave this drug to mice, and as a result they burned more energy." Humans also have an inosine transporter. In two to four percent of all people, it is less active due to a genetic variation. "Our colleagues at the University of Leipzig have genetically analyzed 900 individuals," Pfeifer explains. "Those subjects with the less active transporter were significantly leaner on average."

These results suggest that inosine also regulates thermogenesis in human brown fat cells. Substances that interfere with the activity of the transporter could therefore potentially be suitable for the treatment of obesity. The drug already approved for coagulation disorders could serve as a starting point. "However, further studies in humans are needed to clarify the pharmacological potential of this mechanism," Pfeifer says. Neither does he believe that a pill alone will be the solution to the world's rampant obesity pandemic. "But the available therapies are not effective enough at the moment," he stresses. "We therefore desperately need medications to normalize energy balance in obese patients."

The key role played by the body's own heating system is also demonstrated by a major new joined research consortium: The German Research Foundation (DFG) recently approved a Transregional Collaborative Research Center in which the Universities of Bonn, Hamburg and Munich conduct targeted research on brown adipose tissue.

Facts, background information, dossiers

  • brown fat cells
  • adipocytes
  • fat cells
  • obesity

More about Universität Bonn

  • News

    Covid-19: New energy for flagging immune cells

    In severe Covid-19 patients, the metabolism produces insufficient amounts of certain energy-rich compounds called ketone bodies. However, these energy carriers are needed by two important cell types in the immune system in order to fight the virus effectively. Perhaps this finding explains ... more

    Study shows how bioactive substance inhibits important receptor

    The A2A receptor regulates how vigorously the innate immune system attacks diseased cells. Researchers at the University of Bonn have now been able to show for the first time how an important inhibitor binds to the receptor. In the future, the results will facilitate the targeted search for ... more

    New strategy for COVID-19 prophylaxis

    SARS-CoV-2 viruses can hide from recognition by the immune system. However, the antiviral immune receptor RIG-I can be stimulated, which improves protection against lethal SARS-CoV-2 infections. Researchers led by Prof. Gunther Hartmann from the Institute of Clinical Chemistry and Clinical ... more

  • q&more articles

    A colorful variety of reactions

    The continuing trend towards sustainability, naturalness and healthy nutrition is making plant-based food ingredients with biofunctional and technofunctional properties increasingly important. Polyphenols, synthesized by plants as secondary metabolites, possess the molecular characteristics ... more

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Prof. Dr. Andreas Schieber

    Andreas Schieber, born in 1966, studied food chemistry at the University of Stuttgart and received his doctorate in 1996 from the University of Hohenheim. After his second state examination at the Chemical and Veterinary Investigation Office in Stuttgart, he returned to the university in 19 ... more

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: