08-Jul-2022 - Universität Duisburg-Essen

Catabolic Processes in Cells: Controlling the Danger Within

How cells protect themselves from their defective trash cans

Trillions of cells in our body work non-stop to keep us alive. This generates waste that is decomposed in specialized cellular organs. But what happens if the cellular trash cans don't work? Researchers assume that this is the cause of numerous diseases. Biologists at the University of Duisburg-Essen (UDE), together with a team from Munich, have now been able to show how cells protect themselves from their defective trash cans – because their contents are pretty serious.

Like organs in the human body, cells also have specialized structures inside them called organelles. These include the lysosomes, the cellular trash cans. They not only decompose the waste produced in the cell, they also break down invading pathogens such as bacteria. For this purpose, the small spheres are equipped with an acidic interior and an abundance of enzymes. They are surrounded by a membrane that traps the dangerous mixture inside.

If this membrane is damaged, the mixture spills into the cell itself and, in the worst case, leads to cell death. As a safety measure against the threat from within, cells have developed the following mechanism: they surround the perforated lysosome with another, intact membrane and transport it to another lysosome as if in a bag to be degraded.

In collaboration with a team from Ludwig-Maximilians-Universität Munich, the researchers of the group headed by UDE’s Prof. Hemmo Meyer were able to show that this degradation process depends on various factors: The protein calponin 2 helps to form a new envelope around the damaged lysosome. Subsequently, it has to be removed quickly. Therefore, it is marked with the small molecule ubiquitin like a package with an address label. The p97 enzyme reads this label and then removes the calponin 2. If this process is impaired at any point, a damaged lysosome cannot be degraded and ultimately leads to the death of the cell.

A disrupted process could play a role in the development of various diseases such as tumors, inflammation, neurodegenerative disorders and cardiovascular diseases. "Our findings help to understand the processes involved in the development and progression of diseases," first author Dr. Bojana Kravic explains. "Effective therapeutic approaches can only be developed if we know these pathways."

Facts, background information, dossiers

  • cells
  • cell organelles
  • lysosomes

More about Uni Duisburg-Essen

  • News

    Artificial intelligence: Swarm learning decodes biomolecules

    They are often referred to as the "building blocks of life": Biomolecules. To understand and use their function in the body, one must know their structure. A complex and sometimes imprecise matter. This is where the new method developed at the University of Duisburg-Essen (UDE) together wit ... more

    From 2D crystal to 1D wire

    No volume, not even a surface: a one-dimensional material is like a wire and has properties that are completely different to its 3D counterpart. Physicists at the University of Duisburg-Essen (UDE) have now discovered a system that, at warmer temperatures, forms self-organized wires consist ... more

    Self-organizing molecules: Nanorings with two sides

    The tiny rings that chemists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE) create in the laboratory are as small as a bacterium. Self-organized, individual polymer chains form the flexible structures that can even squeeze themselves through cell membra ... more

  • q&more articles

    DIN/ISO Compliant Calibrations

    Today Analytical Chemistry is embedded in a strictly regulated environment and it has to be ensured that verifiable and officially authorised methods are used. How can this be achieved in a reproducible and unequivocal way? Here we approach this question with respect to the problem of estab ... more

  • Authors

    Dr. Ursula Telgheder

    is lecturer for ­Instrumental Analytical Chemistry within the ­Water Science Study course at the University of Duisburg-Essen. She is the head of a group whose main research areas are the development of coupling systems for the application of ion mobility spectrometry in water analysis and ... more

    Prof. Dr. Karl Molt

    is Professor for Instrumental Analysis at the University of Duisburg-Essen. His main research areas are chemometrics and the use of Molecular Spectrometry for Process Analysis. He is member of chemometric working groups in the division Analytical Chemistry and the Society for Water Chemistr ... more

More about LMU

  • News

    Key factors identified for regeneration of brain tissue

    Whereas cells regularly renew themselves in most endogenous tissues, the number of nerve cells in the human brain and spinal cord remains constant. Although nerve cells can regenerate in the brains of adult mammals, as LMU scientist Professor Magdalena Götz has previously shown, young neuro ... more

    Light-driven molecular swing

    When light impinges on molecules, it is absorbed and re-emitted. Advances in ultrafast laser technology have steadily improved the level of detail in studies of such light-matter interactions. FRS, a laser spectroscopy method in which the electric field of laser pulses repeating millions of ... more

    Secret structure in the wiring diagram of the brain

    In the brain, our perception arises from a complex interplay of neurons that are connected via synapses. But the number and strength of connections between certain types of neurons can vary. Researchers from the University Hospital Bonn (UKB), the University Medical Center Mainz and the Lud ... more

  • Authors

    Prof. Dr. Thomas Carell

    Thomas Carell graduated in chemistry, completing his doctorate at the Max Planck Institute for Medical Research under the tutelage of Prof. Dr Dr H. A. Staab. Following a research position in the USA, he accepted a position at ETH Zurich, setting up his own research group in the Laboratory ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: