05-Aug-2022 - Albert-Ludwigs-Universität Freiburg

A molecular machine at work

A molecular machine at work

The greenhouse gas nitrous oxide (N2O) is produced as a by-product of industrial processes and through the use of fertilizers in agriculture. It is making a steadily growing contribution to climate change and the depletion of the ozone layer. It is so chemically unreactive that it remains in the atmosphere for a very long time. So far, only one enzyme is known in nature that can convert this gas into harmless nitrogen and water: N2O reductase. However, this is a copper-containing metal enzyme and as such is sensitive to the oxygen in the air we breathe. Dr. Christoph Müller and Dr. Lin Zhang from the research group of Prof. Dr. Oliver Einsle at the Institute of Biochemistry at the University of Freiburg, together with Prof. Dr. Juan Du and Prof. Dr. Wei Lü from the Van Andel Research Institute in Grand Rapids/USA, have now made significant progress in understanding this enzyme.

Components of a molecular machine isolated and characterized

With regard to biotechnological applications of N2O reductase, it is crucial to understand and control the supply of copper ions during the assembly of the enzyme in the cell. The scientists* have therefore isolated the components of a multi-part molecular machine that accomplishes this assembly and characterized them using cryo-electron microscopy. They have presented their work in Nature.

Mechanical process: maturation of the metal centers of N2O reductase.

The maturation of the metal centers of N2O reductase is a surprisingly mechanical process in which conformational changes of the membrane protein NosDFY are triggered by the consumption of biochemical energy in the cell. This enables the complex to accept a single copper ion from a special transport protein, NosL, and then offer it to the still copper-free or only partially assembled N2O reductase.

New function discovered

Using a variety of high-resolution structural models, the researchers were able to map and understand the individual steps of this complex process in great detail. They discovered a previously undescribed function of this important class of membrane proteins and took a major step toward harnessing the enzyme N2O reductase to reduce atmospheric nitrous oxide.

Note: This article has been translated using a computer system without human intervention. LUMITOS offers these automatic translations to present a wider range of current news. Since this article has been translated with automatic translation, it is possible that it contains errors in vocabulary, syntax or grammar. The original article in German can be found here.

Facts, background information, dossiers

  • enzymes
  • nitrous oxide
  • N2O reductase

More about Uni Freiburg

  • News

    New discoveries about the origin of the brain’s immune system

    What gets into the brain and what doesn’t is strictly regulated. Researchers at the Faculty of Medicine at the University of Freiburg have now studied phagocytes that coat the blood vessels in the brain and reinforce the blood-brain barrier. As the scientists from the Institute of Neuropath ... more

    Lung Tissue from the Lab

    Laboratory studies of lung tissue usually require the removal of large amounts of human or animal tissue. Now scientists from the University of Freiburg’s Faculty of Medicine have succeeded in collaboration with American researchers in generating tiny quantities of lung tissue, so-called or ... more

    Complex pathways influence time delay in ionization of molecules

    How can researchers use the mechanism of photoionization to gain insight into complex molecular potential? This question has now been answered by a team led by Prof. Dr. Giuseppe Sansone from the Institute of Physics at the University of Freiburg. The researchers from Freiburg, the Max Plan ... more

  • q&more articles

    Modular biofactories at the cellular level

    Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical macromolecules. All molecules are composed of atoms, after all. Why make an artificial distinction? Why not ... more

    Bookmarks

    From a pluripotent stem cell a muscle cell or a liver cell can form, which despite their difference in appearance, are genetically identical. From one and the same genotype, therefore, the most diverse phenotypes can be formed – epigenetics is making it possible! It is a very exciting area ... more

  • Authors

    Dr. Stefan Schiller

    Stefan M. Schiller studied chemistry at Gießen (Mainz, Germany) and the University of Massachusetts, majoring in macromolecular chemistry and biochemistry. For his doctorate in biomimetic membrane systems he worked till 2003 at the Max Planck Institute for Polymer Research in Mainz. Researc ... more

    Julia M. Wagner

    Julia M. Wagner studied pharmacy in Freiburg (licensure 2008). Since 2008 she is a PhD student and research assistant in the group of Professor Dr. M. Jung. Her research focuses ­on the cellular effects of histone deacetylase inhibitors. more

    Prof. Dr. Manfred Jung

    Manfred Jung is a graduate of the University of Marburg, where he studied pharmacy (licensure  1990) and obtained his doctorate in pharmaceutical chemistry with Prof. Dr. W. Hanefeld. After a post-doctorate at the University of Ottawa, Canada, he began with independent research in 1994 ­at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: