17-Aug-2022 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

How do killer T cells know where danger is coming from?

Road signs for immune defence cells - Study generates insights into the inner workings of the adaptive immune response

How do killer T cells recognise cells in the body that have been infected by viruses? Matter foreign to the body is presented on the surface of these cells as antigens that act as a kind of road sign. A network of accessory proteins – the chaperones – ensure that this sign retains its stability over time. Researchers at Goethe University have now reached a comprehensive understanding of this essential cellular quality control process. Their account of the structural and mechanistic basis of chaperone networks has just appeared in the science journal Nature Communications. These new findings could be harbingers of progress in areas such as vaccine development.

Organisms are constantly invaded by pathogens such as viruses. Our immune system swings into action to combat these pathogens immediately. The innate non-specific immune response is triggered first, and the adaptive or acquired immune response follows. In this second defence reaction, specialised cytotoxic T lymphocytes known as killer T cells destroy cells in the body that have been infected and thus prevent damage from spreading. Humans possess a repertoire of some 20 million T cell clones with varying specificity to counter the multitude of infectious agents that exist. But how do the killer T cells know where danger is coming from? How do they recognise that something is wrong inside a cell in which viruses are lurking? They can’t just have a quick peek inside.

At this point, antigen processing comes into play. The process can be compared to making a road sign. The molecular barcode is “processed” or assembled in the cell – in the endoplasmic reticulum, to be exact. Special molecules are used in its making, the MHC class I molecules. They are loaded with information about the virus invader in a molecular machine, the peptide loading complex (PLC). This information consists of peptides, fragments of the protein foreign to the body. These fragments also contain epitopes, the molecular segments that elicit a specific immune response. During the loading process, an MHC I-peptide epitope complex thus forms, and this is the road sign that is then transported to the surface of the cell and presented in a readily accessible form to the killer T cells – we could almost say that it is handed to them on a silver platter. The chaperones, special accessory proteins that assist the correct folding of proteins with complex structures in cells, also play a significant role.

The chaperones that support antigen processing are calreticulin, ERp57, and tapasin. But how do they work together? And how important are they for antigen processing? An answer has now been supplied by a study carried out by Goethe University Frankfurt and the University of Oxford and published in Nature Communications. “With this study, we have achieved a breakthrough in our understanding of cellular quality control,” says Professor Robert Tampé, Director of the Institute of Biochemistry at Goethe University Frankfurt. He explains the logic underlying this quality control process as follows: “The MHC I-peptide epitope complex, the road sign, needs to be exceptionally stable, and for quite a long time, because the adaptive immune response does not start instantly. It needs 3 to 5 days to get going.” So, the sign must not collapse after one day; that would be disastrous, as the immune defence cells would then fail to detect cells infected by a virus. This would mean that they would not destroy these cells and the virus would be able to continue its spread unhindered. A similar problem would arise if a cell in the body had mutated into a tumour cell: the threat would remain undetected. It is imperative, therefore, that a quality control system is in place.

As the study shows, the chaperones are central process components: they give the road sign the long-term stability it must have by making a strict selection. By rejecting the short-lived virus fragments in the mass of available material, they ensure that only MHC I molecules loaded with the best and most stable peptide epitopes in complex with MHC I are released from the peptide loading complex. The chaperones have different tasks in this selection process that is so important for the adaptive immune response, Tampé says: “Tapasin acts as a catalyst that accelerates the exchange of suboptimal peptide epitopes for optimal epitopes. Calreticulin and ERp57, in contrast, are deployed universally.” This concerted approach ensures that only stable MHC I complexes with optimal peptide epitopes reach the cell surface and perform their role of guiding the killer T cells to the infected or mutated cell.

In what directions does the study point? “We now better understand which peptides are loaded and how this occurs now. We can also more reliably predict the dominant peptide epitopes, in other words the stable peptide epitopes that will be selected by the chaperone network.” Tampé hopes that the new findings will prove useful for developing future vaccines against virus variants. They could also facilitate progress on future tumour therapies. “Both topics are directly linked. But the applications in tumour therapy are certainly more complex and more for the long term.”

Facts, background information, dossiers

  • vaccine development
  • chaperones
  • immune system
  • T cells
  • endoplasmic reticulum

More about Uni Frankfurt am Main

  • News

    Laboratory study: effect of antibodies against omicron variants BA.1 and BA.2 wears off quickly

    The omicron variants BA.1 and BA.2 of the SARS-CoV-2 virus, which are dominant from about December to April, can undermine the protection against infection offered by vaccinations or survived infections after only three months. This is shown by a study from Frankfurt under the leadership of ... more

    How bacteria adhere to cells: Basis for the development of a new class of antibiotics

    The adhesion of bacteria to host cells is always the first and one of the decisivesteps in the development of infectious diseases. The purpose of this adhesion by infectious pathogens is first to colonize the host organism (i.e., the human body), and then to trigger an infection, which in t ... more

    New biobattery for hydrogen storage

    The fight against climate change is making the search for carbon-neutral energy sources increasingly urgent. Green hydrogen, which is produced from water with the help of renewable energies such as wind or solar power, is one of the solutions on which hopes are pinned. However, transporting ... more

  • q&more articles

    From feast to famine and back – no problem for bacteria

    Bacteria are true survivors. In the course of evolution, they have developed numerous strategies to adapt to rapidly changing, uncertain environmental conditions. Their metabolism is much more sophisticated than that of human beings. Within minutes they can regulate their gene expression an ... more

    Why biosimilars and not biogenerics?

    Medicines produced using genetic techniques have existed since 2006, called “similar biological medicinal products” or “biosimilars”. Until a year ago, this was a fairly low-profile group, even in expert circles. This has all changed now, however, with the recent licensing of the first bios ... more

    Paradigm shift

    What would medicine be without drugs? But are these drugs being used optimally today? Not at all, as we now know thanks to the findings of molecular medicine. Because for the use of these drugs, it is important to observe two aspects: the disease and the patient. Only slowly is it becom ... more

  • Authors

    Prof. Dr. Claudia Büchel

    Claudia Büchel, born in 1962, studied biology at the University of Mainz, where she also received her doctorate and, in 2001, the qualification to teach plant physiology. After a postdoctoral research period at the Biological Research Centre, Szeged, she worked for four years as a research ... more

    Prof. Dr. Jörg Soppa

    Jörg Soppa, born in 1958, studied biochemistry in Tübingen and then went on to do his doctorate at the Max Planck Institute of Biochemistry in Martinsried near Munich. In 1990 he established his own research group there and held courses at the Institute of Genetics and Microbiology of Munic ... more

    Prof. Dr. Heinfried H. Radeke

    Heinfried H. Radeke studied medicine at the Hannover Medical School (MHH) and received his medical license in 1985. His Ph.D. thesis was recognized as the best research dissertation of 1986. After two years as an assistant physician at the Göttingen University Hospital, he began his career ... more

More about University of Oxford

  • News

    OSCAR detects cells in standby mode

    Dormancy is a sleep-like state of cells that protects them from genetic damage and thus prolongs their survival. This state is reversible and characterized by low metabolic activity and division rate. Researchers from the Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) and the Un ... more

    New kind of interaction discovered in hydrogen-producing enzymes

    In hydrogenase enzymes, the transports of protons and electrons have been considered to be separate events until now. However, coupling is the key to success here. Hydrogenases can convert hydrogen just as efficiently as expensive platinum catalysts. In order to make them usable for biotech ... more

    Shaping the social networks of neurons

    The three proteins Teneurin, Latrophilin and FLRT hold together and bring neighboring neurons into close contact, enabling the formation of synapses and the exchange of information between the cells. In the early phase of brain development, however, the interaction of the same proteins lead ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: