30-Aug-2022 - Universität zu Köln

Molecular Switch Controls Life Expectancy: A Single Protein Controls Aging Signals More Effectively Than In A Team

Scientists have found that the protein CHIP can control life-prolonging signals in the cell better alone than in pairs

A new study shows that the protein CHIP can regulate the insulin receptor more efficiently alone than in a paired state. In cellular stress situations, CHIP usually appears as a homodimer - an association of two identical proteins - and primarily serves to degrade misfolded and defective proteins. CHIP thus cleans up the cell. To this end, CHIP collaborates with helper proteins to attach a chain of the small protein ubiquitin to misfolded proteins. The defective proteins are thus recognized and eliminated by the cell. In addition, CHIP also regulates the signal transduction of the insulin receptor. CHIP binds ubiquitin to the receptor to degrade it and stop the activation of life-extending gene products.

A Cologne-based research team led by Prof Dr Thorsten Hoppe has now shown in experiments with the nematode Caenorhabditis elegans and human cells that CHIP can also label itself with ubiquitin, which prevents its dimer formation. The CHIP monomer is more efficient than the CHIP dimer in regulating insulin signalling. The study by the University of Cologne’s Cluster of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD) was published in Molecular Cell under the title ‘A Dimer-Monomer Switch Controls CHIP-Dependent Substrate Ubiquitylation and Processing’.

“Whether CHIP works alone or as a pair depends on the state of the cell. Under stress, there are too many misfolded proteins as well as the helper proteins that bind to CHIP and prevent auto-ubiquitylation, the self-labelling with ubiquitin,’ said Vishnu Balaji, first author of the study. ‘After CHIP successfully cleans up the defective proteins, it can also mark the helper proteins for degradation. This allows CHIP to ubiquitylate itself and function as a monomer again,’ he explained. Thus, for the body to function smoothly, there must be a balance between the monomeric and dimeric states of CHIP. “It’s interesting that the monomer-dimer balance of CHIP seems to be disrupted in neurodegenerative diseases,’ said Thorsten Hoppe. ‘In spinocerebellar ataxias, for example, different sites of CHIP are mutated, and it functions predominantly as a dimer. Here, a shift to more monomers would be a possible therapeutic approach.’ In the next step, the scientists want to find out whether there are other proteins or receptors to which the CHIP monomer binds, and thus regulates their function. The researchers are also interested in finding out in which tissues and organs and in which diseases CHIP monomers or dimers occur in greater numbers, in order to be able to develop more targeted therapies in the future.

Facts, background information, dossiers

  • proteins
  • life expectancy
  • Caenorhabditis elegans
  • ubiquitin

More about Uni Köln

  • News

    How faulty mRNA is detected and destroyed

    Scientists led by Professor Dr Niels Gehring at the Institute for Genetics at the University of Cologne have investigated two similar proteins, UPF3A and UPF3B, which are involved in the quality control mechanism ‘nonsense-mediated mRNA decay’ (NMD). Their results show that both proteins ar ... more

    Large bacterial populations develop stronger resistance to antibiotics

    An international team of scientists at Wageningen University (Netherlands) and the Institute for Biological Physics at the University of Cologne (Germany) have shown that small and large bacterial populations follow qualitatively different evolutionary paths: Larger populations develop stro ... more

    Deadly combination: new direct trigger for cell death discovered

    Scientists led by Professor Ana J. Garcia-Saez at the CECAD Cluster of Excellence for Aging Research at the University of Cologne have shown that apoptosis, the programmed cell death, involves a direct physical interplay between the two proteins BAX and DRP1. DRP1 can serve as a direct cell ... more

  • q&more articles

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Peter T. Rühr

    Peter T. Rühr, born in 1988, studied biology with a focus on the head morphology of primary wingless insects at the Zoological Research Museum Alexander Koenig and at the University of Bonn, where he received his master's degree in 2017. Since 2018 he has been working at the University of C ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: