21-Sep-2022 - Rheinische Friedrich-Wilhelms-Universität Bonn

Moss repair team also works in humans

"If we could correct faulty sites in the genetic code with RNA editing methods, this would potentially also offer starting points for the treatment of hereditary diseases"

If everything is to run smoothly in living cells, the genetic information must be correct. But unfortunately, errors in the DNA accumulate over time due to mutations. Land plants have developed a peculiar correction mode: they do not directly improve the errors in the genome, but rather elaborately in each individual transcript. Researchers at the University of Bonn have transplanted this correction machinery from the moss Physcomitrium patens into human cells. Surprisingly, the corrector started working there too, but according to its own rules. The results have now been published in the journal "Nucleic Acids Research".

In living cells, there is a lot of traffic like on a large construction site: In land plants, blueprints in the form of DNA are stored not only in the cell nucleus, but also in the cell’s power plants (mitochondria) and the photosynthesis units (chloroplasts). These blueprints contain building instructions for proteins that enable metabolic processes. But how is the blueprint information passed on in mitochondria and chloroplasts? This is done by creating transcripts (RNA) of the desired parts of the blueprint. This information is then used to produce the required proteins.

Errors accumulate over time

However, this process does not run entirely smoothly. Over time, mutations have caused errors to accumulate in the DNA that must be corrected in order to obtain perfectly functioning proteins. Otherwise, the energy supply in plants would collapse. At first glance, the correction strategy seems rather bureaucratic: instead of improving the slip-ups directly in the blueprint - the DNA - they are cleaned up in each of the many transcripts by so-called RNA editing processes.

Compared to letterpress printing, it would be like correcting each individual book by hand, rather than improving the printing plates. "Why living cells make this effort, we do not know," says Dr. Mareike Schallenberg-Rüdinger of the Institute of Cellular and Molecular Botany (IZMB) at the University of Bonn. "Presumably, these mutations increased as plants spread from water to land during evolution."

In 2019, the IZMB team led by Prof. Dr. Volker Knoop succeeded in transplanting RNA editing processes from the moss Physcomitrium patens into the bacterium Escherichia coli. It was shown that the repair proteins of the moss can also modify the RNA of these bacteria.

Now, researchers from the Institute of Cellular and Molecular Botany, together with the team led by Prof. Dr. Oliver J. Gruss from the Institute of Genetics at the University of Bonn, have gone one step further: They transferred the RNA editing machinery from the moss into standard human cell lines, including kidney and cancer cells, for example. "Our results showed that the land plant correction mechanism also works in human cells," reports first author Elena Lesch. "This was previously unknown."

But that's not all: the RNA editing machines PPR56 and PPR65, which only act in mitochondria in the moss, also introduce nucleotide changes in RNA transcripts of the cell nucleus in human cells.

More than 900 targets

Surprisingly for the research team, PPR56 makes changes at more than 900 points of attack in human cell targets. In the moss, on the other hand, this RNA corrector is only responsible for two correction sites." There are many more nuclear RNA transcripts in human cells than mitochondrial transcripts in the moss," explains Dr. Mareike Schallenberg-Rüdinger. "As a result, there are also many more targets for the editors to attack." Although the editors follow a particular code, at this stage, it is not yet possible to accurately predict where the editing machines will make changes in human cells.

However, the abundance of RNA editing targets in human cells also offers the opportunity to find out more about the basic mechanisms of the correctors in further studies. This could be the basis for methods of inducing a very specific change in RNA in human cells by means of a corrector. "If we could correct faulty sites in the genetic code with RNA editing methods, this would potentially also offer starting points for the treatment of hereditary diseases," says Schallenberg-Rüdinger, looking to the future. "Whether that will work remains to be seen."

Facts, background information, dossiers

  • DNA mutation
  • DNA damage
  • Physcomitrium patens
  • mosses
  • DNA
  • RNA editing
  • Escherichia coli

More about Universität Bonn

  • News

    Hemophilia: Training the immune system to be tolerant

    Hemophilia A is the most common severe form of hemophilia. It affects almost exclusively males. The disease can usually be treated well, but not for all sufferers. A study at the University of Bonn has now elucidated an important mechanism that is crucial for making the therapy effective. T ... more

    Fish to help in search for MS drugs

    The zebrafish serves as a model organism for researchers around the world: it can be used to study important physiological processes that also take place in a similar form in the human body. It is therefore routinely used in the search for possible active substances against diseases. Resear ... more

    Covid-19: New energy for flagging immune cells

    In severe Covid-19 patients, the metabolism produces insufficient amounts of certain energy-rich compounds called ketone bodies. However, these energy carriers are needed by two important cell types in the immune system in order to fight the virus effectively. Perhaps this finding explains ... more

  • q&more articles

    A colorful variety of reactions

    The continuing trend towards sustainability, naturalness and healthy nutrition is making plant-based food ingredients with biofunctional and technofunctional properties increasingly important. Polyphenols, synthesized by plants as secondary metabolites, possess the molecular characteristics ... more

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Prof. Dr. Andreas Schieber

    Andreas Schieber, born in 1966, studied food chemistry at the University of Stuttgart and received his doctorate in 1996 from the University of Hohenheim. After his second state examination at the Chemical and Veterinary Investigation Office in Stuttgart, he returned to the university in 19 ... more

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: