19-Oct-2022 - Universitätsklinikum Bonn

Secret structure in the wiring diagram of the brain

Researchers discover a hidden order in seemingly random connections between neurons

In the brain, our perception arises from a complex interplay of neurons that are connected via synapses. But the number and strength of connections between certain types of neurons can vary. Researchers from the University Hospital Bonn (UKB), the University Medical Center Mainz and the Ludwig-Maximilians-University Munich (LMU), together with a research team from the Max Planck Institute for Brain Research in Frankfurt, as part of the DFG-funded Priority Program "Computational Connectomics" (SPP2041), have now discovered that the structure of the seemingly irregular neuronal connection strengths contains a hidden order. This is essential for the stability of the neuronal network. The study has now been published in the journal "PNAS".

Ten years ago, connectomics, that is the creation of a map of the connections between the approximately 86 billion neurons in the brain, was declared a future milestone of science. This is because in complex neuronal networks, neurons are connected to each other by thousands of synapses. Here, the strength of the connections between individual neurons is important because it is crucial for learning and cognitive performance. "However, each synapse is unique and its strength can vary over time. Even experiments that measured the same type of synapse in the same brain region yielded different values for synaptic strength. However, this experimentally observed variability makes it difficult to find general principles underlying the robust function of neuronal networks," says Prof. Tatjana Tchumatchenko, research group leader at the Institute of Experimental Epileptology and Cognitive Research of the UKB and at the Institute of Physiological Chemistry of the University Medical Center Mainz, explaining the motivation to conduct the study.

Mathematics and laboratory combined purposefully

In the primary visual cortex (V1), the visual stimuli transmitted by the eye via the thalamus, a switching point for sensory impressions in the diencephalon, are first recorded. The researchers took a closer look at the connections between the neurons that are active during this process. To do this, the researchers measured experimentally the joint response of two classes of neurons to different visual stimuli in the mouse model. At the same time, they used mathematical models to predict the strength of synaptic connections. To explain their lab-recorded activities of such network connections in the primary visual cortex, they used the so-called "stabilized supralinear network" (SSN). "It is one of the few nonlinear mathematical models that offers the unique possibility to compare theoretically simulated activity with actually observed activity," says Prof. Laura Busse, research group leader at LMU Neurobiology. "We were able to show that combining SSN with experimental recordings of visual responses in the mouse thalamus and cortex allows us to determine different sets of connection strengths that lead to the recorded visual responses in the visual cortex."

Sequence between the connection strengths is the key

The researchers found that there was an order behind the observed variability in synapse strength. For example, the connections from excitatory to inhibitory neurons were always the strongest, while the reverse connections in the visual cortex were weaker. This is because the absolute values of synaptic strengths varied in the modeling - as they had in the earlier experimental studies - but nevertheless always maintained a certain order. Thus, the relative ratios are crucial for the course and strength of the measured activity, rather than the absolute values. "It is remarkable that analysis of earlier direct measurements of synaptic connections revealed the same order of synaptic strengths as our model prediction based on measured neuronal responses alone," says Simon Renner, Ph.D., of LMU Neurobiology, whose experimental recordings of cortical and thalamic activity allowed characterization of the connections between cortical neurons. "Our results show that neuronal activity contains much information about the underlying structure of neuronal networks that is not immediately apparent from direct measurements of synapse strengths. Thus, our method opens a promising perspective for the study of network structures that are difficult to access experimentally," explains Nataliya Kraynyukova, Ph.D., from the Institute of Experimental Epileptology and Cognitive Research of the UKB and Max Planck Institute for Brain Research in Frankfurt. This study is the result of an interdisciplinary collaboration between the lab of Prof. Busse and Prof. Tchumatchenko, who worked closely together, building on the computational and experimental expertise of their labs.

Facts, background information, dossiers

  • brain
  • neurons
  • synapses
  • neural networks
  • cortex
  • brain research

More about Uniklinik Bonn

  • News

    Bacterial membrane transporter helps pathogens to hide from immune system

    The transport of substances across the membrane into the cell is linked to specific membrane transport proteins. Researchers at the University Hospital Bonn (UKB) and the University of Bonn, in collaboration with an international team, have now succeeded in elucidating the molecular structu ... more

    Comparison of two nano rulers

    In the Middle Ages, every city had its own system of measurement. Even today, you can sometimes find iron rods in marketplaces that determined the length measurement valid for the city at that time. In science, however, there is no room for such uncertainties, and no matter what method you ... more

More about Uni Mainz

More about LMU

  • News

    Key factors identified for regeneration of brain tissue

    Whereas cells regularly renew themselves in most endogenous tissues, the number of nerve cells in the human brain and spinal cord remains constant. Although nerve cells can regenerate in the brains of adult mammals, as LMU scientist Professor Magdalena Götz has previously shown, young neuro ... more

    Light-driven molecular swing

    When light impinges on molecules, it is absorbed and re-emitted. Advances in ultrafast laser technology have steadily improved the level of detail in studies of such light-matter interactions. FRS, a laser spectroscopy method in which the electric field of laser pulses repeating millions of ... more

    Innate immunity: the final touch for antimicrobial defence

    If bacteria enter the body, it often takes just a few minutes for the innate immune system to recognise them as foreign and set the immune defence in motion. Receptors of the immune system that recognise bacterial cell wall components play a central role in this process. An important immune ... more

  • Authors

    Prof. Dr. Thomas Carell

    Thomas Carell graduated in chemistry, completing his doctorate at the Max Planck Institute for Medical Research under the tutelage of Prof. Dr Dr H. A. Staab. Following a research position in the USA, he accepted a position at ETH Zurich, setting up his own research group in the Laboratory ... more

More about MPI für Hirnforschung

  • News

    Of men and mice

    The human neocortex mediates many of the capacities that distinguish us from our closest relatives such as conscious thought and language. It is therefore striking that our understanding of this brain area is still overwhelmingly based on studies with animal models. A team of scientists led ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: