27-Oct-2022 - Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Batteries without critical raw materials

Berlin based research group "operando battery analysis" has developed new cell chemistry

The market for rechargeable batteries is growing rapidly, but the necessary raw materials are limited. Sodium-ion batteries, for example, could offer an alternative. A joint research group from HZB and Humboldt-Universität zu Berlin has investigated new combinations of electrolyte solutions and electrode materials for this purpose.

"In contrast to lithium-ion batteries, which are based on the storage of lithium ions in the positive and negative electrodes of the battery, we are working on the one hand with sodium ions, as they also occur in cheap table salt. On the other hand, we store the sodium ions together with their solvate shell, i.e. solvent molecules from the electrolyte solution that separate the two electrodes. This makes it possible to realise completely new storage reactions," explains Prof. Philipp Adelhelm, who heads the research group "operando battery analysis", which was jointly founded by Humboldt University and Helmholtz-Zentrum Berlin in 2020.

The storage of ions when accompanied by their solvation shell in a crystal lattice is referred to as co-intercalation. Up to this point, this concept was limited to the negative electrode of the sodium-ion battery. Now the researchers around Adelhelm have succeeded in extending the concept to the positive electrode of the battery. Dr. Guillermo A. Ferrero, first author of the publication, explains: "With titanium disulphide and graphite, we have for the first time combined two materials that absorb and release the same solvent during charging and discharging of the battery”. The scientists could observe changes in the material during charging and discharging via operando measurements performed in the X-Ray Core Lab at HZB on the LIMAX 160. This helped them to assign the co-intercalation mechanism inside the battery. They could then use this new knowledge to realise a battery with two electrodes that both rely on reversible co-intercalation of solvent molecules.

“We are still in the early stages of understanding the implications of the co-intercalation batteries. But there are a few possible advantages we can envision”, Dr. Katherine A. Mazzio, HZB, explains: The process of co-intercalation could improve upon efficiency by enabling better low temperature performance. It could also be utilised to improve upon alternative cell concepts such as using multi-valent ions instead of Li+ or Na+ storage that are particularly sensitive to the solvation shell.”

Facts, background information, dossiers

More about Helmholtz-Zentrum Berlin für Materialien und Energie

More about HU Berlin

  • News

    Light-controlled molecules: Scientists develop new recycling strategy

    Robust plastics are composed of molecular building-blocks, held together by tough chemical linkages. Their cleavage is extremely difficult to achieve, rendering the recycling of these materials almost impossible. A research team from the Humboldt-Universität zu Berlin (HU) developed a molec ... more

    Photocatalyst system for plastics production

    A research team from Berlin has developed a novel catalyst system, which enables the regulation of multiple polymerization processes to produce biodegradable plastics solely by illumination with light of different colors.  The properties of a polymeric material are highly dependent on facto ... more

  • q&more articles

    Light-regulated production of biodegradable plastics

    Light is a powerful tool to manipulate a vast variety of chemical processes. The use of specific photo-chromic molecules allows chemists to perform reactions in a reversible fashion with a high spatio-temporal resolution. more

    Alzheimer's: searching for a way out

    Although the discovery of Alzheimer's disease now lies over a century in the past, the crucial events that influence the course of the disorder remain largely unknown. For some time now, researchers have been turning their attention to the tau protein, long known to be a component of deposi ... more

  • Authors

    Prof. Dr. Dietrich A. Volmer

    Dietrich Volmer, born in 1965, is Full Professor and Chair in Bioanalytical Chemistry at Humboldt-Universität zu Berlin. He graduated with a PhD in Analytical Chemistry at the University of Hannover in 1994, under the supervision of Karsten Levsen. After postdoctoral research as ORISE Fello ... more

    Prof. Dr. Caroline Stokes

    Caroline Stokes, born in 1978, previously worked as a researcher at the Medical Research Council, Human Nutrition Research in Cambridge, England, and for the British National Health Service. She obtained her PhD from the Medical Faculty of Saarland University, where she subsequently qualifi ... more

    Michael Kathan

    Michael Kathan, born in 1988, studied chemistry at the Freie Universität Berlin and ETH Zurich, where he focused on fluorine chemistry and strained aromatic systems. After completing his master degree at the Freie Universität Berlin, he began his PhD thesis in 2015 in the research group of ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: