02-Nov-2022 - Rheinische Friedrich-Wilhelms-Universität Bonn

Hemophilia: Training the immune system to be tolerant

Study elucidates an important immune mechanism

Hemophilia A is the most common severe form of hemophilia. It affects almost exclusively males. The disease can usually be treated well, but not for all sufferers. A study at the University of Bonn has now elucidated an important mechanism that is crucial for making the therapy effective. The results could help better tailor treatment to patients. They have already been published online in a preliminary version; the final version will soon be published in the "Journal of Clinical Investigation."

Hemophilia A patients have a defect in a protein that is important for blood clotting: factor VIII. Most patients therefore receive an intravenous injection of the functional clotting factor every few days as treatment. But frequently, and especially at the start of treatment, the immune system recognizes the injected agent as foreign to the body and attacks it. This is the most serious complication of hemophilia treatment because factor VIII can then no longer work.

In these cases, immune tolerance therapy, which was also developed at the University Hospital Bonn (UKB) more than 40 years ago, often helps. This involves regularly injecting the hemophiliacs with a high dose of factor VIII over several months. The immune system thereby gets used to the injected protein and tolerates it. The underlying immune mechanisms are unknown. "However, this doesn't always work," explains Prof. Dr Johannes Oldenburg, Director of the Institute for Experimental Haematology and Transfusion Medicine at the UKB. "In about 30 percent of patients, tolerance induction does not lead to success. So your body's own defenses continue to attack and destroy the factor VIII protein, which means that factor VIII cannot be used for treatment. We wanted to know the reason for this."

To this end, the team looked at two cell types in the immune system, B cells and regulatory T cells. B cells recognize foreign molecules in the body and produce antibodies against them, which switch off the function of the molecule. For factor VIII, this means that it is no longer effective in hemophilia treatment.

Brake in the immune system

Regulatory T cells prevent an immune response from being too strong or lasting too long. The researchers have now found a new type among them that can act specifically against certain B cells rather than just non-specifically against all immune responses. "We were able to show that immunotolerance therapy results in the generation of regulatory T cells that exclusively induce B cells against factor VIII to commit suicide," says Dr. Janine Becker-Gotot of the Institute of Molecular Medicine and Experimental Immunology (IMMEI) at UKB. "These T cells have a sensor that allows them to recognize and attach to the corresponding B cells. In addition, they have the ability to push the self-destruct button on the surface of B cells."

This button is a molecule called PD-1. By activating it, it starts a program in the B cell that results in its death. Every active B cell has this button. "Our experiments enabled us for the first time to detect regulatory T cells that can activate this self-destruct button only in very specific B cells, in order to specifically prevent unwanted immune responses," explains IMMEI Director Prof. Dr. Christian Kurts.

The more PD-1 buttons the B cells against factor VIII carry on their surface, the easier it is for them to be driven to suicide by immune tolerance therapy. "The amount of PD-1 varies from person to person," Becker-Gotot explains. "If it's very low to begin with, there's a good chance that many inhibitor-producing B cells will survive and continue to neutralize the injected factor VIII."

Test to show in whom immunotolerance therapy is useful

Interestingly, B cells also produce more PD-1 once they come into contact with regulatory T cells. "We can now test how strong this reaction is," the researcher says. "If PD-1 levels go up shortly after starting immune tolerance therapy and then stay up, that's a clear sign that the treatment is going to be successful." The team is currently developing a blood test that can be used to detect whether or not immune tolerance therapy is working in patients during the prolonged treatment.

"Our findings have great basic scientific value," explains Prof. Kurts, who is a member of the Transdisciplinary Research Area "Life & Health" at the University of Bonn and, like Dr. Becker-Gotot and Prof. Oldenburg, a member of the Cluster of Excellence ImmunoSensation. "And not just for hemophilia, but also for other congenital disorders where missing proteins are replaced therapeutically. In the long term, they could also be used to develop new treatments."

Facts, background information, dossiers

  • hemophilia
  • hemophilia A
  • blood clotting
  • immune system
  • regulatory T cells
  • T cells
  • B cells
  • immunotolerance therapy
  • blood tests

More about Universität Bonn

  • News

    Covid vaccination improves effectiveness of cancer treatment

    Patients with nasopharyngeal cancer are often treated with drugs that activate their immune system against the tumor. Until now, it was feared that vaccination against Covid-19 could reduce the success of cancer treatment or cause severe side effects. A recent study by the Universities of B ... more

    Fish to help in search for MS drugs

    The zebrafish serves as a model organism for researchers around the world: it can be used to study important physiological processes that also take place in a similar form in the human body. It is therefore routinely used in the search for possible active substances against diseases. Resear ... more

    Moss repair team also works in humans

    If everything is to run smoothly in living cells, the genetic information must be correct. But unfortunately, errors in the DNA accumulate over time due to mutations. Land plants have developed a peculiar correction mode: they do not directly improve the errors in the genome, but rather ela ... more

  • q&more articles

    A colorful variety of reactions

    The continuing trend towards sustainability, naturalness and healthy nutrition is making plant-based food ingredients with biofunctional and technofunctional properties increasingly important. Polyphenols, synthesized by plants as secondary metabolites, possess the molecular characteristics ... more

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Prof. Dr. Andreas Schieber

    Andreas Schieber, born in 1966, studied food chemistry at the University of Stuttgart and received his doctorate in 1996 from the University of Hohenheim. After his second state examination at the Chemical and Veterinary Investigation Office in Stuttgart, he returned to the university in 19 ... more

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: