25-Nov-2022 - Université de Strasbourg

Primeval Reaction Pathways

Some reactions in the reverse Krebs cycle can also be run under meteorite catalysis

Naturally occurring chemical reactions may have evolved into the biochemical processes we know today. A team of researchers has now discovered that a reaction sequence from the so-called reverse Krebs cycle—a fundamental biochemical process—can also take place without enzymes. The team writes in the journal Angewandte Chemie that metals and even powdered meteorite material can catalyze the hydrogenation reactions.

Cells obtain energy and molecular building blocks through metabolic processes. Compounds are synthesized and broken down again in universal biochemical processes with the help of enzymes. However, simple organic molecules such as organic acids, amino acids, and peptides have been found in extraterrestrial objects, suggesting that organic molecules might have existed on early Earth, even before life as we know it developed.

Taking the theory of a self-organizing chemical network, some fundamental biochemical reaction sequences derived from naturally occurring chemical reactions may have evolved into the biochemical processes we know today. Sophia Rauscher and Joseph Moran of the University of Strasbourg, France, have now investigated a sequence of the reverse Krebs cycle, a biochemical process used by some microorganisms for fixing carbon dioxide. In this portion of the process, the small organic molecule oxaloacetate is hydrogenated and dehydrated to give succinate in three chemical steps.

In the cellular reverse Krebs cycle, hydrogenation—the attachment of hydrogen atoms—takes place using enzymes that transfer organically bound hydrogen. In order to simulate hydrogenation as it might have occurred on the primordial earth three to four billion years ago, Rauscher and Moran used elemental hydrogen and metal catalysts. They justified these choices since hydrogen is formed in natural geological processes and can accumulate in reservoirs in the ground or in hydrothermal vents. In addition, meteorites that fell to earth during this period brought metals with them.

In the experiment, malate was initially formed from oxaloacetate in a hydrogenation reaction, even under mild reaction conditions, mimicking the first hydrogenation step in the pathway. Following the dehydration of malate to fumarate, succinate was formed from fumarate in a further hydrogenation step, following the same sequence of molecules and reactions as in the biological reverse Krebs cycle. Metals such as nickel and even pure powdered meteorite sample were able to catalyze the reactions. These findings could prove relevant for our understanding of the origins of some fundamental metabolic pathways, the authors argue.

Facts, background information, dossiers

More about Université de Strasbourg

  • News

    Useful “Fake” Peptides

    Some useful drugs consist of peptides acting on their protein targets. To make them more efficient and stable, scientists have found a way to replace crucial segments of the peptides with ureido units. These oligoureas, which are composed of urea-based units, fold into a structure similar t ... more

    Motor And Energy Store In One

    Physicists and material scientists have succeeded in constructing a motor and an energy storage device from one single component. They used an elastic polymer fibre closed into a ring that was made to rotate on application of an external energy supply. The researchers from the universities ... more

  • q&more articles

    A Light for Time, and a Time for Light

    As everybody knows, our eyes are the sensory organs that allow us to see the world around us. Light enters the eye through the pupil and strikes the photosensitive retina at the back to commence a complex biochemical and physiological process that we know as vision. This ability is vital to ... more

  • Authors

    Dr. David Hicks

    born in 1956, studied zoology at the University of Bristol, UK, before gaining his doctorate in developmental neuropsychology in London (1978–81). He subsequently spent a postdoc sojourn at the Faculty of Biochemistry at the University of British Columbia in Vancouver, Canada, where he firs ... more

More about Angewandte Chemie

  • News

    Nanocrystals Store Light Energy and Drive Chemical Reactions

    Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In ... more

    Economical PEF Production

    One possible replacement for drink containers made from PET is polyethylene furandicarboxylate (PEF), made from renewable resources. However, the production of the raw material for PEF from biomass is still rather inefficient. A new titanium-based photocatalyst could be about to change this ... more

    Cage with Caps: Selective confinement of rare-earth-metal hydrates in host molecules

    Rare-earth metals are indispensable for many technical products, from smartphones, laptops, batteries, electromotors, and wind turbines, to catalysts. In the journal Angewandte Chemie, a Japanese team has now introduced a molecular “cage” with “caps” that can be used to selectively “confine ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: