28-Nov-2022 - Julius-Maximilians-Universität Würzburg

Protein Spheres Protect the Genome of Cancer Cells

Hollow spheres made of MYC proteins open new doors in cancer research: Researchers start a company

MYC genes and their proteins play a central role in the emergence and development of almost all cancers. They drive the uncontrolled growth and altered metabolism of tumour cells. And they help tumours hide from the immune system.

MYC proteins also show an activity that was previously unknown – and which is now opening new doors for cancer research: They form hollow spheres that protect particularly sensitive parts of the genome. If these MYC spheres are destroyed, cancer cells will die.

This was reported by a research team led by Martin Eilers and Elmar Wolf from the Institute of Biochemistry and Molecular Biology at Julius-Maximilians-Universität Würzburg (JMU, Bavaria, Germany) in the journal "Nature". The researchers are convinced that their discovery is a game changer for cancer research, an important breakthrough on the way to new therapeutic strategies.

Hollow spheres protect sensitive DNA sites

What the researchers discovered: When cells in the lab are kept under stress conditions similar to those found in fast-growing tumour cells, the MYC proteins in the cell nucleus rearrange themselves in a dramatic way. They join together to form hollow spheres consisting of thousands of MYC proteins.

The hollow spheres surround and protect individual, particularly sensitive sites in the genome – precisely the sites where two types of enzymes can collide: Enzymes that read DNA to synthesize RNA and enzymes that duplicate DNA. Both can be thought of as two trains travelling on only one track, on DNA.

The hollow spheres thus prevent the two enzymes from colliding. The Würzburg team was able to confirm this observation in cancer cells. If the protective function of the protein spheres is switched off experimentally, collisions of the enzymes occur and, as a consequence, multiple breaks occur in the DNA – which ultimately kill the cancer cells.

Search for specifically effective drugs

"These observations revolutionize our understanding of why MYC proteins are so crucial for the growth of tumor cells," says Martin Eilers. The new findings also raise the question of whether drugs can be developed that specifically prevent the formation of the hollow spheres.

To drive this development forward, Eilers and Wolf have started a company. Together with JMU and partners from the pharmaceutical industry, the search for drugs that interfere with the newly discovered functions of the MYC proteins has begun.

"The fact that investors made it possible for us to set up so quickly is certainly not an everyday occurrence," say the JMU professors. They also consider this as a sign that they have made a discovery that is very promising.

Facts, background information, dossiers

  • proteins
  • cancer

More about Uni Würzburg

  • News

    Gene activity in a test tube

    When searching for the causes of illnesses and developing new treatments, it is absolutely vital to have a precise understanding of the genetic fundamentals. Würzburg researchers have devised a new technique for this purpose. Pathological processes are usually characterised by altered gene ... more

    Artificial Enzyme Splits Water

    Chemists from Würzburg present a new enzyme-like molecular catalyst for water oxidation. Mankind is facing a central challenge: it must manage the transition to a sustainable and carbon dioxide-neutral energy economy. Hydrogen is considered a promising alternative to fossil fuels. It can be ... more

    New Players in the Immune Response

    Lymph nodes trigger very different immune responses – depending on which body tissue they are connected to. Special T cells are responsible for this newly discovered relation. The human body contains 600 to 800 lymph nodes, which are specialised organs that trigger immune responses. To be i ... more

  • q&more articles

    High-tech in the beehive

    Healthy honeybee colonies are crucial to maintaining the natural diversity of flowering plants and the global production of plant-derived foodstuffs. As much as 35 % of this production depends on insect-based pollination, in which the honeybee (Apis mellifera) plays a leading role. For fund ... more

  • Authors

    Prof. Dr. Jürgen Tautz

    studied biology, geography and physics at the University of Konstanz before receiving his doctorate from the University on an ecology-related subject. Work in insect, fish and frog bio-acoustics was followed by his foundation of the BEEgroup at the University of Würzburg in 1994, a group th ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: