13-Dec-2022 - Westfälische Wilhelms-Universität Münster

New way to produce important molecular entity

Chemists develop method for simple production of vicinal diamines

Among the most common structures relevant to the function of biologically active molecules, natural products and drugs are so-called vicinal diamines - in particular, unsymmetrically constructed diamines. Vicinal diamines contain two functional atomic groups responsible for the substance properties, each with a nitrogen atom bonded to two neighbouring carbon atoms. A team led by Prof. Dr. Frank Glorius of the Institute of Organic Chemistry at the University of Münster has now presented a new, direct way to produce vicinal diamines in the journal "Nature Catalysis".

In contrast to other, less suitable methods, the process does not require the use of transition metals and iodine reagents as catalysts. Instead, the researchers use light energy to produce the desired diamines from various electron-rich aromatic hydrocarbons (arenes and heteroarenes). "In this way, we obtain a series of vicinal diamines that were previously difficult to produce. In doing so, we can precisely control the sites where the functional groups are located," explains first author Dr. Guangying Tan.

To this end, the chemists developed a class of special nitrogen radical precursors that simultaneously generate two nitrogen-centered radicals with different reactivities via an energy transfer process. By "regioselectively" adding two of these radicals stepwise via carbon-carbon double bonds, the scientists produce the unsymmetrically constructed vicinal diamines. "Regioselective" means that the reaction occurs at defined sites on the molecules. The functional groups (amino groups) can then be further modified. The fact that the diamines synthesised in this way are not symmetrical, in contrast to a symmetrical structure, opens up a much greater variety of functional groups to be considered.

"The molecules of life consist largely of carbon chains and rings of varying size and complexity. The decoration of these 'plain' chains with other elements is crucial for the resulting properties of these compounds," Frank Glorius explains the background. A key role is played by the elements oxygen and nitrogen. Chemists refer to these non-carbon elements as heteroatoms. "Methods for the efficient and controlled introduction of these heteroatoms into artificially produced, biologically active structures are therefore of great importance," Frank Glorius emphasizes. "This also applies to the vicinal diamines we are focusing on."

The chemists perform the diamination reaction under irradiation with blue light-emitting diodes (LEDs) and using an inexpensive and commercially available thioxanthone as an organic photosensitizer.

Facts, background information, dossiers

  • diamines
  • vicinal diamines

More about WWU Münster

  • News

    Researchers show that chiral oxide catalysts align electron spin

    Controlling the spin of electrons opens up future scenarios for applications in spin-based electronics (spintronics), for example in data processing. It also presents new opportunities for controlling the selectivity and efficiency of chemical reactions. Researchers recently presented first ... more

    On the way to cell-type materials

    Molecular machines control a sizeable number of fundamental processes in nature. Embedded in a cellular environment, these processes play a central role in the intracellular and intercellular transportation of molecules, as well as in muscle contraction in humans and animals. In order for t ... more

    Biochemists use new tool to control mRNA by means of light

    DNA (deoxyribonucleic acid) is a long chain of molecules composed of many individual components, and it forms the basis of life on Earth. The function of DNA is to store all genetic information. The translation of this genetic information into proteins – which an organism needs to function, ... more

  • q&more articles

    Dandelions as a new source of natural rubber

    More than 12,500 plants produce latex, a colorless to white milky sap that contains, among other things, natural rubber. However, this industrially indispensable raw material is found in only three plants in a quality required to produce high-performance rubber products such as car tires. more

  • Authors

    Prof. Dr. Dirk Prüfer

    Dirk Prüfer, born in 1963, studied biology at the University of Cologne and gained his doctorate at the Max Planck Institute for Plant Breeding Research. In 2004, he qualified as a professor at Justus Liebig University, Gießen, Germany. Since 2004 he is Professor of Molecular Plant Biotechn ... more

    Prof. Dr. Joachim Jose

    born 1961,studied biology at the University of Saarbrücken, where he was awarded a doctorate. He gained his professorship at the Institute of Pharmaceutical and Medicinal Chemistry of the University of the Saarland. From 2004 to 2011, he was professor for bioanalytics (C3) at the Heinrich-H ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: