20-Dec-2022 - Angewandte Chemie

Long-Lasting, Intense Afterglow

Organic dyes with persistent delayed fluorescence and ultralong phosphorescence

A team of researchers from Lithuania has developed organic dyes showing a particularly long afterglow after being excited by light. Doping a polymer with newly synthesized diboraanthracene dyes resulted in an intense red or blue–green dual afterglow, which was composed of persistent thermally activated delayed fluorescence and long phosphorescence at room temperature, the team reports in the journal Angewandte Chemie. Such organic materials can find important optoelectronic applications, such as in data encryption, information recording, and sensors.

“When you try to develop materials with a more efficient phosphorescence, the problem is that a more intensive phosphorescence often results in the decrease of phosphorescence lifetime and vice versa,” says Justina Jovaišaitė from Vilnius University (Lithuania), the corresponding author of the study. To overcome this problem, the team developed diboraanthracene dyes, for which the efficiency of long-lasting phosphorescence was supplemented by the efficiency of persistent thermally activated delayed fluorescence.

To achieve the desired dual afterglow, the team modified the diboraanthracene scaffold by synthetic methods. Diboraanthracene compounds have the basic aromatic structure of the organic chemical anthracene but contain two boron atoms. Synthetic modification not only lead to a more intense afterglow than in purely phosphorescing materials, but it also allowed the researchers to create organic dyes with different afterglow colors, which were tunable. “Upon cooling, the afterglow color either shifted from red to green or from green to blue. This can be of extreme importance for development of temperature sensors,” Jovaišaitė says.

The newly developed organic dyes could be used in data recording and information encryption. To demonstrate this, the researchers prepared transparent layers coated by the studied organic compounds. They irradiated the samples with intense laser light to write information, which could be read when the entire layer was exposed to less intense UV light.

The researchers hope that, through more in-depth investigation of the photophysical properties of their system, they will be able to optimize and control these afterglow properties further. They plan to increase duration, efficiency, and tunability of the afterglow. “Polymer-based organic afterglow materials are desirable because of their flexibility, transparency, and suitability for large-scale production,” Jovaišaitė says.

Facts, background information, dossiers

More about Angewandte Chemie

  • News

    Primeval Reaction Pathways

    Naturally occurring chemical reactions may have evolved into the biochemical processes we know today. A team of researchers has now discovered that a reaction sequence from the so-called reverse Krebs cycle—a fundamental biochemical process—can also take place without enzymes. The team writ ... more

    Nanocrystals Store Light Energy and Drive Chemical Reactions

    Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In ... more

    Economical PEF Production

    One possible replacement for drink containers made from PET is polyethylene furandicarboxylate (PEF), made from renewable resources. However, the production of the raw material for PEF from biomass is still rather inefficient. A new titanium-based photocatalyst could be about to change this ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: