22-Dec-2022 - Universität Bayreuth

New study on optimizing microbial fuel cells shows electrode material can make all the difference

At present, microbial fuel cells are mainly used in research laboratories to generate electricity. In order for industrial applications to be considered in the future, the fuel cells must be further developed so that they can produce consistently higher amounts of electricity than is currently the case. In a recent study published in the journal "Biotechnology for Biofuels and Bioproducts", a research team from the University of Bayreuth has investigated factors playing a role in this. The choice of electrode material was shown to be particularly important for increasing stability and performance.

The electrical circuit in microbial fuel cells is kept running by the metabolism of microorganisms: These feed on organic compounds, releasing electrons that are transferred to the fuel cell's anode and from here to the cathode. The Bayreuth research team tested two different electrode materials in its investigations into optimizing microbial fuel cells: Carbon felt and modified stainless steel mesh. The best results were achieved when the electrodes of the cells were made of stainless-steel mesh, the surface of which was modified with highly conductive carbon black and environmentally friendly polymer binder. The optimal distance between the anode and cathode was about four centimetres. This reliably generated quantities of electricity that can be used in practice, for example, to power environmental monitoring sensors in remote regions – without being connected to the power grid. Such fuel cells also make it possible to decontaminate petroleum hydrocarbon-contaminated soils while simultaneously producing electrical power. As the study shows, the efficiency of such detoxification strategies can be significantly increased if the suitable electrodes are available to capture the metabolic electrons.

"The significantly higher performance we were able to achieve with the microbial fuel cell using the newly developed electrodes can be explained by the fact that this material provides a larger specific surface area with which the microorganisms can interact and capacitive features to internally store the bioelectricity. Therefore, the number of electrons released from microbial metabolism that enter the circuit is particularly high here," says the study's first author, Meshack Imologie Simeon M.Sc. As a doctoral student in the University of Bayreuth’s Bioprocess Engineering research group, he is researching possibilities for sustainable energy production based on bioelectricity. He first got in touch with scientists working on this topic in Bayreuth while he was a master’s student at the University of Ibadan and a research assistant at the Federal University of Technology in Minna, Nigeria.

As the study shows, the stability of the fuel cells and the amount of electricity generated is also influenced by the time intervals at which the microorganisms are fed. Time-flexible feeding that kicks in when a weakening of the power generation became noticeable proved to be particularly effective. This was found to contribute more to an increase in fuel cell performance than regular feeding at equal time intervals.

The Bayreuth research team conducted its studies on a soil-based fuel cell (Soil Microbial Fuel Cells): This type of fuel cell works with bacteria and other microorganisms, such as those found in arable or forest soils. To identify the different types of microorganisms involved in power generation in the fuel cell, microbial DNA sequences were taken from the electrodes. These sequences were analyzed for their origin under the direction of Dr. Alfons Weig in the Central Laboratory for DNA Analysis at the University of Bayreuth. Proteobacteria accounted for the largest proportion, but another bacterial strain – Firmicutes – was also frequently represented.

"Our studies show that natural soils contain a mixture of different bacterial strains that are capable of direct electron transfer and can be used in fuel cells to generate bioelectricity. As far as we have been able to determine, the ratio of these strains in the mixture has no significant influence on the stability and performance of the fuel cell. The greatest influence is exerted by the electrode materials, on which the ohmic resistance in the circuit and the electrical capacity of the fuel cells depend," emphasizes Prof. Dr. Ruth Freitag, Chair of Bioprocess Engineering at the University of Bayreuth.

Facts, background information, dossiers

  • electron transfer

More about Uni Bayreuth

  • News

    A new peptide system for the targeted transport of molecules into living mammalian cells

    A novel peptide developed at the Universities of Bayreuth and Bristol is eminently suited for the targeted transport of molecules, for example of active substances and dyes, into the cells of mammals. The peptide is characterized by a dual function: It can enter the cell from the outside an ... more

    New spectroscopic insights into hydrogen bonds

    Hydrogen bonds are of fundamental interest in materials science, physics and chemistry. An international team including scientists from the University of Bayreuth has now achieved surprising insights into the formation of hydrogen bonds using a novel method that enables the application of N ... more

    New method for the technological use of 2D nanomaterials

    Nanosheets are finely structured two-dimensional materials and have great potential for innovation. They are fixed on top of each other in layered crystals, and must first be separated from each other so that they can be used, for example, to filter gas mixtures or for efficient gas barrier ... more

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Prof. Dr. Stephan Clemens

    Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thal ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: