05-Aug-2014 - Karlsruher Institut für Technologie (KIT)

Free Pores for Molecule Transport

Researchers Identify Cause of Surface Barriers of Metal-Organic Frameworks (MOFs)

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many MOFs is inhibited by barriers. Scien-tists of Karlsruhe Institute of Technology (KIT) now report in “Nature Communications” that the barriers are caused by cor-rosion of the MOF surface. This can be prevented by water-free synthesis and storing strategies.

MOFs are crystalline materials consisting of metallic nodes and organic connection elements. They have a very large surface area and are highly porous. Like a sponge, they can take up other mole-cules. MOFs, produced on a large technical scale, are highly suited for the storage of gases: When the gas enters the solid, it is partly liquefied. The density increases and much more molecules can be stored in the same volume. Among others, MOFs are suited for the storage of hydrogen in the tank of hydrogen-driven automobiles. They can also be used for storing greenhouse gases like carbon dioxide and methane. Other applications are substance separation, catalysis, and sensor technology. For any application, an appropri-ate MOF can be produced. Mostly, MOFs have the form of a pow-der. In the past ten years, more than 20,000 different representatives of this class have been synthesized and characterized in detail.

“For nearly all applications, loading of these highly porous crystals with molecules is essential,” Lars Heinke of the Institute of Function-al Interfaces (IFG) of KIT explains. “The efficiency of molecule transport into the porous particles is crucial to the performance of the MOFs.” In many MOF materials, however, loading is inhibited largely by so-called surface barriers. The surface of the sponge is broken, the pores are clogged, and loading is delayed significantly. This limits the application opportunities.

To better understand and identify the reasons of these problems, the IFG researchers studied the formation of surface barriers. For this purpose, they conducted fundamental experiments on thin, structurally perfect MOF layers mounted on solid substrates. These SURMOFs (SURface-mounted Metal-Organic Frameworks) are characterized by a high order and ideal structure. The researchers succeeded in attributing the barriers to a corrosion of MOF layers on the surface. They demonstrated how corrosion of the surface layer proceeds and found that water plays a central role. “Many scientists thought that these surface barriers are intrinsic and, hence, cannot be prevented. This assumption has now been disproved. It is possible to produce MOFs for loading without “clogging”,” says the Head of KIT’s IFG, Professor Christof Wöll. The work reported in the journal “Nature Communications” refutes several previous hypotheses.

The findings might be helpful for many applications of MOFs. Due to the results of the KIT researchers, water-free synthesis strategies for MOFs will have to be developed in the future. Improved materials will ensure barrier-free transport of molecules from the gas phase and liquid phase into MOFs. This will enable to further increase the efficiency of these promising storage and functional materials.

Facts, background information, dossiers

More about KIT

  • News

    Machine Learning Speeds up Simulations in Material Science

    Research, development, and production of novel materials depend heavily on the availability of fast and at the same time accurate simulation methods. Machine learning, in which artificial intelligence (AI) autonomously acquires and applies new knowledge, will soon enable researchers to deve ... more

    Catalyst Research: Molecular Probes Require Highly Precise Calculations

    Catalysts are indispensable for many technologies. To further improve heterogeneous catalysts, it is required to analyze the complex processes on their surfaces, where the active sites are located. Scientists of Karlsruhe Institute of Technology (KIT), together with colleagues from Spain an ... more

    Producing Graphene from Carbon Dioxide

    The general public knows the chemical compound of carbon dioxide as a greenhouse gas in the atmosphere and because of its global-warming effect. However, carbon dioxide can also be a useful raw material for chemical reactions. A working group at Karlsruhe Institute of Technology (KIT) has n ... more

  • q&more articles

    Analytical quantitation of gluten in foods

    According to legislation, foods bearing a gluten-free label must not contain more than 20 mg of gluten per kilogram, which is crucial to ensure food safety for celiac disease patients. Gluten is detected by immunological, genomic, chromatographic and/or mass spectrometric methods, but the c ... more

    Assessing the lung toxicity of air pollutants

    The current debates on driving bans in European cities show not only how important air quality is to the public but also reveal the lack of available methods to directly assess the adverse effects of air pollutants on human health. more

  • Authors

    Prof. Dr. Katharina Scherf

    Katharina Scherf, born in 1985, leads the Department of Bioactive and Functional Food Chemistry at the Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT). Having studied food chemistry at the Technical University of Munich (TUM) she obtained her PhD degree and qualif ... more

    Majlinda Xhaferaj

    Majlinda Xhaferaj, born in 1992, completed her food chemistry studies in 2018 at the Karlsruhe Institute of Technology (KIT). Since 2019 she has been a PhD student under the supervision of Professor Dr. Katharina Scherf in the Department of Bioactive and Functional Food Chemistry. Her resea ... more

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt earned her diploma in mechanical engineering at the Berufsakademie Mannheim (now DHBW) in 2000, completing her concomitant training at the Karlsruhe Research Center, now the Karlsruhe Institute of Technology (KIT). In 2014 she received the Master of Science in Chemical Enginee ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: