17-Sep-2014 - Max-Planck-Institut für Polymerforschung

Smart polymers: Complex matter where simplicity matters

Physicists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz unveil the microscopic mechanism behind the puzzling co-non-solvency effect that leads to smart polymer collapse in a mixture of good solvents.

MPI-P scientists Kurt Kremer and Debashish Mukherji, together with their collaborator Carlos Marques from the French Centre national de la recherche scientifique (CNRS), propose a novel framework to understand the solubility of smart polymers in solvent mixtures. Combining “generic” molecular simulations with analytical theory, they solve a long standing question to explain the microscopic mechanism behind smart polymer collapse in mixtures of good solvents. Their results and findings are published in the most recent issue of the scientific journal “Nature Communications”.

Smart polymers are a modern class of polymeric material: they can be both artificial and produced by chemists or natural, as is the case for peptides. They exhibit a wide range of exotic and unpredictable behaviors when dissolved in mixed solutions. For example, while water and alcohol are well miscible and, individually, good solvents for several smart polymers, the latter precipitate in water-alcohol mixtures. The intriguing behavior of solvent mixtures that cannot dissolve a given polymer, when the same macromolecule dissolves well in each of the cosolvents, is termed as co-non-solvency. Thus far the understanding of this effect is a matter of intense debate and, as such, it has eluded any generic explanation. Combining molecular dynamics simulations and analytical theory, they show that the co-non-solvency effect is a generic (independent of chemical details) phenomenon. Their findings suggest that when a polymer is dissolved in a mixture of solvents, such that one of the (co)solvents likes the polymer even more than the other, this co-non-solvency effect can be observed. Therefore, a broad range of polymers are expected to present similar reentrant behavior.

One of the most intriguing findings of this work is that a polymer collapses even when the solvent quality becomes better-and-better by the addition of the better cosolvent, making the polymer conformation independent of the solvent quality. “This decoupling of solvent quality and polymer conformation is unexpected and new, opening interesting views for instance on the solution processing of polymers or biomedical applications such as pharmaceutical encapsulation” explains Kurt Kremer, director at the Max Planck Institute for Polymer Research.

These results not only provide the microscopic understanding of the co-non-solvency effect, but they also open new perspectives towards an operational understanding of macromolecular solubility within a simplified computational and/or theoretical framework.

  • Debashish Mukherji, Carlos M. Marques, and Kurt Kremer; Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption; Nature Communications (2014)

Facts, background information, dossiers

More about MPI für Polymerforschung

  • News

    The Power of light: How light can be used to control processes in synthetic cells

    Synthetic – i. e. artificially produced - cells can imitate certain functions of biological cells. These synthetic cells could open up new medical possibilities in the future. In laboratories, such cells can already help in chemical processes on a miniature scale as "mini-reactors". Scienti ... more

    It’s all about the sausage

    The right crack of the sausage is, not least, a matter of physics. A team from the Max Planck Institute for Polymer Research in Mainz has investigated how the properties of plant proteins influence the mouthfeel of vegetarian and vegan sausages. Using the findings this revealed, the first c ... more

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

More about Max-Planck-Gesellschaft

  • News

    Neuroscientists illuminate how brain cells deep in the cortex operate in freely moving mice

    How can we see what neurons deep in the cortex are doing during behavior? Researchers at the Max Planck Institute for the Neurobiology of Behavior - caesar (MPINB) have developed a miniature microscope small enough to be carried on the head of a freely moving mouse and capable of measuring ... more

    Measuring Organ Development

    Researchers from Dresden and Vienna reveal link between connectivity of three-dimensional structures in tissues and the emergence of their architecture to help scientists engineer self-organising tissues that mimic human organs. Organs in the human body have complex networks of fluid-filled ... more

    Back to the Future of Photosynthesis

    The central biocatalyst in Photosynthesis, Rubisco, is the most abundant enzyme on earth. But how did Rubisco evolve, and how did it adapt to environmental changes during Earth’s history? By reconstructing billion-year-old enzymes, a team of Max Planck Researchers has deciphered one of the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: