q&more
My watch list
my.chemie.de  
Login  

News

New Light in Terahertz Window

Supercomputer simulations pave the way towards compact terahertz sources with tunable wavelengths

Forschungszentrum Jülich

Propagation of the terahertz waves in ionized gas in a magnetic field of 178 tesla.

25-Jun-2015: The terahertz range is one of the last sections of the electromagnetic spectrum – which extends from radio waves through optical applications right up to X-ray radiation – that is still rarely used in everyday life. The radiation is difficult to generate and until now this was only possible to a limited extent. Yet it has the potential for numerous applications. In Physical Review Letters, scientists at Jülich together with their international partners present a new concept that uses short-pulse lasers to expand the capabilities of terahertz sources currently being developed. An important part was played by calculations performed on Jülich’s supercomputer JUQUEEN.

Using detailed simulations, the scientists showed how the wavelengths and polarization of the generated terahertz radiation can be controlled via a strong external magnetic field. In the electromagnetic spectrum, terahertz waves occupy a band between microwaves and infrared radiation. The range from 0.1 THz to 30 THz, the so-called "terahertz gap", sits right between electronics and optics and is therefore not accessible through conventional electric devices or optical sources such as antennas and lamps. However, its special properties make THz radiation interesting for a variety of reasons: on the one hand, it penetrates textiles and plastics, while on the other, it is absorbed by many materials in a characteristic manner. The application spectrum ranges from non-invasive early cancer screening to food controls and body scans as well as ultrafast wireless connections.

Since the beginning of this century, femtosecond laser-based sources generating terahertz waves have been in use as comparatively compact and cheap alternatives to large particle accelerators. “This method works like a transformer that converts the high frequency of the incoming laser beam into the lower terahertz frequency range,” explains Prof. Paul Gibbon from the Jülich Supercomputing Centre (JSC).

One particularly favourable technique, which is currently being refined, utilizes two ultrashort laser pulses of different frequencies which are aimed at a gas target. The gas is ionized and electrons are released. In this way, the much faster laser oscillationsare transformed into terahertz waves with lower frequencies. "The strong electromagnetic fields of the two lasers cause the electrons to oscillate but not quite harmonically – or sinusoidally – but instead asymmetrically, which when averaged over the laser cycle produces a type of direct current," says Humboldt fellow Dr. Wei-Min Wang, who also works at the Jülich Supercomputing Centre (JSC). The frequencies would otherwise remain in the higher range of lasers. "In this way, a terahertz pulse is generated that lasts exactly one cycle – and then radiates outwards," says Wang.

Together with researchers at the University of Strathclyde and the Institute of Physics in Beijing, which is part of the Chinese Academy of Sciences, the two researchers have now published a paper on their new concept, which would enable the generation of terahertz radiation with tunable wavelengths over several cycles with a narrow bandwidth – characteristics that are similar to those of lasers in the optical range. It utilizes a strong magnetic field which is applied externally to the ionized gas and forces the free electrons in the plasma to gyrate like in a particle accelerator. This orbit determines the wavelength as well as the direction of oscillation of the resulting radiation. The optical properties can be tuned as required by altering the strength of the magnetic field – which could open the door to a wide variety of new applications.

“Spectroscopic and imaging techniques – like, for example, those used to investigate the dynamics of large biomolecules such as DNA – could particularly benefit from such a radiation source as it promises better temporal and spatial resolving power,” explains Wei-Min Wang. However, practically implementing it is not that easy, and an experimental verification has yet to be realised. "The concept requires a combination of powerful lasers and magnetic fields exceeding 100 tesla. Technically, this is extremely challenging, but it is possible within the given space and time scales," says Paul Gibbon. The scientists are performing complex simulation calculations on one of the fastest supercomputers in Europe – Jülich’s supercomputer JUQUEEN – to explore the properties of the new terahertz source.

Facts, background information, dossiers

  • terahertz devices

More about Forschungszentrum Jülich

  • News

    Assemblies of proteins relevant not only for Alzheimer’s and Parkinson’s disease

    Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K S ... more

    New Quantum Dot Microscope Shows Electric Potentials of Individual Atoms

    A team of researchers from Jülich in cooperation with the University of Magdeburg has developed a new method to measure the electric potentials of a sample at atomic accuracy. Using conventional methods, it was virtually impossible until now to quantitatively record the electric potentials ... more

    Artificial Synapses Made from Nanowires

    Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to both save and process information, as well as receive numerous signals in par ... more

  • q&more articles

    Macromolecular environments influence proteins

    The high-intensity interaction of proteins with other macromolecules can cause signifi cant changes to protein properties such as translational mobility, for example, or their conformational states. Accordingly, the study of proteins in macromolecular environments that typically very closel ... more

    Caffeine Kick

    Caffeine is the most widely consumed psychoactive substance worldwide. It supplies the active ingredient in beverages such as coffee, tea and energy drinks. Caffeine can focus vigilance and attention, reduce drowsiness and enhance the ability to perform cognitive functions. Its neurobiologi ... more

  • Authors

    Prof. Dr. Jörg Fitter

    Jörg Fitter studied physics at the University of Hamburg. After completing his doctoral studies at FU Berlin, he worked in neutron scattering and molecular biophysics at the Hahn Meitner Institute in Berlin and Jülich Research Center. He completed his habilitation in physical biology at Hei ... more

    Dr. David Elmenhorst

    studied medicine in Aachen before receiving his doctorate in sleep research from the German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt, DLR) in Cologne. During 2008/2009, he was a visiting researcher at the Brain Imaging Centre in Canada’s Montreal Neurological Institute an ... more

    Prof. Dr. Andreas Bauer

    studied medicine and philosophy in Aachen, Cologne and Düsseldorf, where he received his doctorate in the field of neuroreceptor autoradiography. After specialist medical training at Cologne University Hospital he completed his habilitation in neurology at the University of Düsseldorf. Sinc ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE