q&more
My watch list
my.chemie.de  
Login  

News

How lipids are flipped

Illustration: from Perez et al, 2015

Comparison of cavities (green) in inward-facing (left) and outward-occluded (right) states of PglK, with native LLO (middle) shown as space-filling model for size reference

14-Aug-2015: A team of researchers at ETH Zurich and the University of Bern has succeeded in determining the structure of a lipid flippase at high resolution, which has provided insight into how this membrane protein transports lipids by flipping.

Biological membranes have a fundamental role, countless vital processes occur at membranes, including the transport of various substances. The transport of phospholipids and lipid-linked oligosaccharides (LLO) is particularly difficult to achieve due to the bipolar nature of the lipid. This is why flippases are required to transport lipids from one side of the membrane to the other, essentially flipping their orientation. Flippases have important roles in maintaining the asymmetry of cellular membranes, i.e. in the different lipid composition of the outer and inner sides. In mammals, this affects various processes such as blood coagulation, immune recognition and programmed cell death, or apoptosis. Flippases are also essential for transporting lipid-linked oligosaccharides ("LLOs"), which are transferred onto acceptor proteins during N-linked protein glycosylation.

Flippase structure revealed for the first time

Until now biologists knew neither the high-resolution structures of flippases nor the exact mechanism used to flip LLOs. Three research teams from ETH Zurich and the University of Bern, led by ETH professor Kaspar Locher, have now determined the structure of one such flippase, the PglK protein from the bacterium Campylobacter jejuniThis required the researchers to purify the flippase from bacterial membranes and generate three-dimensional crystals, which were then analysed using X-ray crystallography to determine the positions of all atoms. The scientists determined three distinct structures that corresponded to different states of the flippase during the reaction. Their data allowed the researchers to deduce a molecular mechanism of how PglK flips LLOs.

The researchers show that PglK consists of two identical subunits that move like a pair of scissors when energy (ATP) is consumed. Similar to a credit card reader, the oligosaccharide moiety of the lipid-linked oligosaccharide is then pulled into a hydrophilic channel within the flippase. The hydrophobic, lipidic tail of the LLO molecule remains exposed to the lipidic membrane, causing the LLO to change its orientation so that the sugar part ends up on the outside of the membrane. The flippase itself does not change its orientation during translocation reaction and therefore acts as a catalyst.

Fundamentally different mechanism

The newly-discovered mechanism fundamentally differs from previously known transport processes that catalyze import or export of soluble substrates. "The flipping of lipids in membranes has always fascinated biochemists and cell biologists; the biological solution to this problem thrills us!" says co-author Markus Aebi, Professor of Microbiology at ETH Zurich.

The research groups from ETH Zurich and the University of Bern are the first to have solved the fundamental biological puzzle of how LLOs are flipped. They developed a novel method for studying the reaction in vitro. ETH Professor Aebi insists that only through the cooperation of structural biologists, chemists and microbiologists was it possible to decipher this basic mechanism

Therapeutic applications?

Although the present work constitutes basic research, there are diseases associated with mutations in a human flippase, explains Aebi. These diseases are termed 'congenital disorders of glycosylation'. More than 10,000 glycosylation sites in various proteins have been identified in humans.

Original publication:
Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond J-L, Locher KP., "Molecular view of lipid-linked oligosaccharide translocation across biological membranes." Nature, 2015

Facts, background information, dossiers

  • flippase
  • cell membranes
  • ETH Zürich
  • Uni Bern

More about ETH Zürich

  • News

    Decoding the way catalysts work

    Splitting water into hydrogen and oxygen is an important chemical reaction, especially considering that the use of hydrogen as an energy source in sustainable mobility in the future. An international research team has now decoded how one of the catalysts used in this reaction works. Hydroge ... more

    A 40-year-old catalyst unveils its secrets

    “Titanium silicalite-1” (TS-1) is not a new catalyst: It has been almost 40 years since its development and the discovery of its ability to convert propylene into propylene oxide, an important basic chemical in the chemical industry. Now, by combining various methods, a team of scientists f ... more

    Mechanism discovered how the coronavirus hijacks the cell

    Researchers at ETH Zurich and the University of Bern have discovered a mechanism by which the corona virus manipulates human cells to ensure its own replication. This knowledge will help to develop drugs and vaccines against the corona virus. Like a pirate hijacking a ship, a virus takes co ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

More about Universität Bern

  • News

    Researchers create sophisticated lung-on-chip

    In collaboration with clinical partners from the Inselspital, researchers from the ARTORG Center for Biomedical Research of the University of Bern have developed a second-generation lung-on-chip model with life-size dimension alveoli in a stretchable membrane, made of purely biological mate ... more

    Mechanism discovered how the coronavirus hijacks the cell

    Researchers at ETH Zurich and the University of Bern have discovered a mechanism by which the corona virus manipulates human cells to ensure its own replication. This knowledge will help to develop drugs and vaccines against the corona virus. Like a pirate hijacking a ship, a virus takes co ... more

    Bern coronavirus clone goes "viral"

    Researchers in virology and veterinary bacteriology at the University of Bern have cloned the novel coronavirus (SARS-CoV-2). The synthetic clones are being used by research groups worldwide to test corona samples, find antiviral drugs and develop vaccines as quickly as possible. The method ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE