22-Sep-2015 - Max-Planck-Institut für Polymerforschung

The structural memory of water persists on a picosecond timescale

Long-lived sub-structures exist in liquid water as discovered using novel ultrafast vibrational spectroscopies

A team of scientists from the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany and FOM Institute AMOLF in the Netherlands have characterized the local structural dynamics of liquid water, i.e. how quickly water molecules change their binding state. Using innovative ultrafast vibrational spectroscopies, the researchers show why liquid water is so unique compared to other molecular liquids.


With the help of a novel combination of ultrafast laser experiments, the scientists found that local structures persist in water for longer than a picosecond, a picosecond (ps) being one thousandth of one billionth of a second (10-12 s). This observation changes the general perception of water as a solvent. “71% of the earth’s surface is covered with water. As most chemical and biological reactions on earth occur in water or at the air water interface in oceans or in clouds, the details of how water behaves at the molecular level are crucial. Our results show that water cannot be treated as a continuum, but that specific local structures exist and are likely very important” says Mischa Bonn, director at the MPI-P.

Water is a very special liquid with extremely fast dynamics. Water molecules wiggle and jiggle on sub-picosecond timescales, which make them undistinguishable on this timescale. While the existence of very short-lived local structures - e.g. two water molecules that are very close to one another, or are very far apart from each other - is known to occur, it was commonly believed that they lose the memory of their local structure within less than 0.1 picoseconds.

The proof for relatively long-lived local structures in liquid water was obtained by measuring the vibrations of the Oxygen-Hydrogen (O-H) bonds in water. For this purpose the team of scientists used ultrafast infrared spectroscopy, particularly focusing on water molecules that are weakly (or strongly) hydrogen-bonded to their neighboring water molecules. The scientists found that the vibrations live much longer (up to about 1 ps) for water molecules with a large separation, than for those that are very close (down to 0.2 ps). In other words, the weakly bound water molecules remain weakly bound for a remarkably long time.

Facts, background information, dossiers

  • Amolf

More about MPI für Polymerforschung

  • News

    Combination Therapy against Cancer

    In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the ... more

    When ions rattle their cage

    Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecu ... more

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

More about Max-Planck-Gesellschaft

  • News

    First programmable photocatalyst developed

    Researchers at the Max Planck Institute of Colloids and Interfaces have developed a sustainable and "smart photocatalyst". The special feature: as a so-called smart material, it can distinguish between the colors of light (blue, red and green) and, in response, enables a specific chemical r ... more

    Molecular mechanisms of corona drug candidate Molnupiravir unraveled

    The United States recently secured 1.7 million doses of a compound that could help to treat Covid-19 patients. In preliminary studies, Molnupiravir reduced the transmission of the SARS-CoV-2 coronavirus. Researchers at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen an ... more

    Cellular filaments keeping the pace

    A new model describes the coordination of beating cilia allowing to predict their functional behavior. Researchers from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) analyzed the formation of metachronal waves in arrays of cilia and how external cues might influence th ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: