25-Jan-2016 - University of Pittsburgh

Researchers developing sponge-like material to more efficiently store natural gas

Although compressed natural gas represents a cleaner and more efficient fuel for vehicles, its volatile nature requires a reinforced, heavy tank that stores the gas at high pressure and therefore limits vehicle design. Researchers at the University of Pittsburgh's Swanson School of Engineering are utilizing metal-organic frameworks (MOFs) to develop a new type of storage system that would adsorb the gas like a sponge and allow for more energy-efficient storage and use.

The research was conducted by Christopher E. Wilmer, assistant professor of chemical and petroleum engineering, and postdoctoral fellow Hasan Babaei. Traditional CNG tanks are empty structures that require the gas to be stored at high pressure, which affects design and the weight of the vehicle. Dr. Wilmer and his lab are instead focused on porous crystal/gas systems, specifically MOFs, which possess structures with extremely high surface areas.

"One of the biggest challenges in developing an adsorbed natural gas (ANG) storage system is that the process generates significant heat which limits how quickly the tank can be filled," Dr. Wilmer said. "Unfortunately, not a lot is known about how to make adsorbents dissipate heat quickly. This study illuminates some of the fundamental mechanisms involved."

According to Dr. Wilmer, gases have a $500 billion impact on the global economy, but storing, separating, and transporting gas requires energy-intensive compression. His research into MOFs is an extension of his start-up company, NuMat Technologies, which develops MOF-based solutions for the gas storage industry.

"By gaining a better understanding of heat transfer mechanisms at the atomic scale in porous materials, we could develop a more efficient material that would be thermally conductive rather than thermally insulating," he explained. "Beyond natural gas, these insights could help us design better hydrogen gas storage systems as well. Any industrial process where a gas interacts with a porous material, where heat is an important factor, could potentially benefit from this research."

  • Hasan Babaei and Christopher E. Wilmer; "Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal-Organic Frameworks"; Phys. Rev. Lett.; 2016

Facts, background information, dossiers

  • University of Pittsburgh
  • gas storage

More about University of Pittsburgh

  • News

    Researchers show that chiral oxide catalysts align electron spin

    Controlling the spin of electrons opens up future scenarios for applications in spin-based electronics (spintronics), for example in data processing. It also presents new opportunities for controlling the selectivity and efficiency of chemical reactions. Researchers recently presented first ... more

    Sparking sustainable new chemical catalysts

    Engineers rely on catalysts for a vast array of applications from food manufacturing to chemical production, so finding efficient, environmentally friendly catalysts is an important avenue of research. New research led by the University of Pittsburgh Swanson School of Engineering could lead ... more

    Living longer or healthier?

    Aging research indicates that better healthspan--the quality of life as we age--may be more important than lifespan. In a report published in Nature Communications, a surprising new genetic discovery by researchers at the University of Pittsburgh School of Medicine and UPMC Children's Hospi ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: