My watch list


Flake-like nanoparticles offer reliable rust protection

INM/Uwe Bellhäuser

Flake-type nanoparticles of zinc-phosphate increase the gas barrier for corrosion protection in steel.

15-Apr-2016: Large quantities of steel are used in architecture, bridge construction and ship-building. Structures of this type are intended to be long-lasting. In particular, the steel is attacked by oxygen in the air, water vapor and salts. Various techniques are used to prevent the corrosive substances from penetrating into the material. One common method is to create an anti-corrosion coating by applying layers of zinc-phosphate. Now research scientists at INM developed a special, flake-like type of zinc-phosphate nanoparticles. As a result of this anisotropy, the penetration of gas molecules into the metal is slowed down. The developers will be demonstrating their results and the possibilities they offer at this year's Hanover Trade Fair.

“In first test coatings, we were able to demonstrate that the flake-type nanoparticles are deposited in layers on top of each other thus creating a wall-like structure,” explained Carsten Becker-Willinger, Head of Nanomers® at INM. “This means that the penetration of gas molecules through the protective coating is longer because they have to find their way through the ´cracks in the wall´”. The result, he said, was that the corrosion process was much slower than with coatings with spheroidal nanoparticles where the gas molecules can find their way through the protective coating to the metal much more quickly.

In further series of tests, the scientists were able to validate the effectiveness of the new nanoparticles. To do so, they immersed steel plates both in electrolyte solutions with spheroidal zinc-phosphate nanoparticles and with flake-type zinc-phosphate nanoparticles in each case. After just half a day, the steel plates in the electrolytes with spheroidal nanoparticles were showing signs of corrosion whereas the steel plates in the electrolytes with flake-type nanoparticles were still in perfect condition and shining, even after three days. The researchers created their particles using standard, commercially available zinc salts, phosphoric acid and an organic acid as a complexing agent. The more complexing agent they added, the more anisotropic the nanoparticles became.

Original publication:
Perre, Emilie, Albayrak, Sener, Wild, Mandy, Becker-Willinger, Carsten; "Flake-type zinc phosphate particles as new corrosion protection additives in organic coatings"; Conference transcript of EUROCORR 2015, September 06-10, 2015, Graz, 2015

Facts, background information, dossiers

More about Leibniz-Institut für Neue Materialien

  • News

    New breathing material lubricates itself when needed

    Earthworms are always clean, even if they come from moist, sticky soil. They owe this to a dirt-repellent, lubricating layer, which forms itself again and again on its skin. Researchers at INM have now artificially recreated this system of nature: They developed a material with a surface st ... more

    Improved corrosion protection with flake-type zinc-phosphate particles

    Large quantities of steel are used in architecture, bridge construction and ship-building. Structures of this type are intended to be long-lasting. Furthermore, even in the course of many years, they should not lose any of their qualities regarding strength and safety. For this reason, the ... more

    Optimized analytics reduce “false negatives” in the detection of nanoparticles

    The INM – Leibniz Institute for New Materials has joined forces with a manufacturer of analytical equipment to reduce particles losses and avoid false negatives. They developed reference nanoparticles and used them to investigate how the analysis can be improved. Many everyday products and ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:


Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE