q&more
My watch list
my.chemie.de  
Login  

News

Tiny microbots that can clean up water

Self-propelled tiny ‘microbots’ that can remove pollution from contaminated water developed.

Copyright © 2016 American Chemical Society

Self-propelled microbot captures lead from contaminated water.

03-May-2016: Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead from industrial wastewater from a level of 1000 parts-per-billion to down to below 50 parts-per-billion in just an hour. The lead can lat-er be removed for recycling, and the micromotors can be used over and over again.

“The outer shell of the microbot, which is graphene, captures the lead,” says Samuel, group leader at the Max-Planck Institute for Intelligent Systems in Stuttgart and the Institute for Bioengineering of Catalonia (IBEC) in Barcelona. “The inner layer of platinum works as the engine, decomposing hydro-gen peroxide as fuel so that the bot can self-propel.” When hydrogen peroxide is added to the wastewater, the platinum decomposes it into harmless water and oxygen bubbles, which are ejected from the back of the microbot to propel it forward. “It’s important to use a system of pollutant re-moval that doesn’t produce any additional contamination," explains Samuel.

Between the graphene oxide and platinum layers is a layer of nickel that allows researchers to con-trol the movement and direction of the microbot magnetically from outside. “A magnetic field can be used to collect them all from the water when they’ve finished,” says Samuel. “In the future, our microbot s swarm could be controlled by an automated system that magnetically guides them to carry out various tasks.”

Heavy metal contamination in water – by lead, arsenic, mercury and other metals – stems from in-dustrial activities and poses a serious risk to public health and wildlife. These new microbots – each one smaller than the width of a human hair – offer a solution that is potentially faster and cheaper than current methods of water cleaning, as well as being environmentally friendly: they enable the gathered pollutants to be dealt with responsibly by relinquishing the lead afterwards for recycling, as well as being reusable themselves.

Beyond the capture of heavy metal contamination, the researchers studied self-propelled microbots that are capable of degrading organic pollutants. The microbots can be recovered and reused for multiple times for up to 5 weeks without any decrease in their organic-degradation performance.

"We now plan to develop our microbots to be able to collect other contaminants, as well as reducing the cost of making them and being able to mass-produce them," says Samuel, who also works on self-propelling micro- and nanorobots for applications in areas such as drug delivery.

Original publication:
Diana Vilela, Jemish Parmar, Yongfei Zeng, Yanli Zhao, and Samuel Sánchez; "Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water"; Nano Letters; 2016

Facts, background information, dossiers

More about MPI für Intelligente Systeme

More about Max-Planck-Gesellschaft

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE