q&more
My watch list
my.chemie.de  
Login  

News

A Negative Enzyme Yields Positive Results

University of Basel, Department Chemistry

The anion-π enzyme consists of an electron-poor arene cofactor (grey stick representation) embedded within a protein (displayed as surface).

25-May-2016: Chemistry has provided many key tools and techniques to the biological community in the last twenty years. We can now make proteins that Mother Nature never thought of, image unique parts of live cells and even see cells in live animals. This week in ACS Central Science, two research groups from the University of Geneva and the University of Basel, both members of the NCCR Molecular Systems Engineering, show how to design an unnatural protein with new-to-nature capabilities.

Proteins are the workhorses of every cell. They are made up of building blocks called amino acids that are linked up and fold together into functional machines to power every major cellular process. To do these tasks, nature relies on twenty of these blocks together with a few special “co-factors”, often vitamins. However, chemists have discovered clever ways of expanding a protein’s repertoire, engineering in different amino acids or co-factors than you would find in natural biology.

Stefan Matile, Thomas Ward and coworkers designed a new co-factor that reverses a classic protein interaction called the cation-π, meaning the stabilization of a positive charge on an electron-rich molecular plane. Nature uses these cation-π interactions to prepare molecules as important as steroids, hormones, vitamins, visual pigments or fragrances, to transduce signals in the brain, to recognize antigens, and so on.

Using their new co-factor, and resulting artificial protein, Matile and Ward’s groups collaborated to create the first “anion-π” enzyme, where that electron-rich molecular plane is replaced by an electron-poor plane to stabilize a negative- rather than a positive charge during a molecular transformation. In a test tube, proteins with this new-to-nature functionality were able to outperform traditional organic catalysts in an important but disfavored addition reaction with high specificity and selectivity. They believe their approach can be moved to work in cells and can help make other currently impossible chemical transformations a reality.

Original publication:
Yoann Cotelle, Vincent Lebrun, Naomi Sakai, Thomas R. Ward, and Stefan Matile; "Anion-π Enzymes"; ACS Central Science; 2016

Facts, background information, dossiers

  • Université de Genève
  • Universität Basel
  • proteins

More about Universität Basel

  • News

    Perturbation-free studies of single molecules

    Researchers of the University of Basel have developed a new method with which individual isolated molecules can be studied precisely – without destroying the molecule or even influencing its quantum state. This highly sensitive technique for probing molecules is widely applicable and paves ... more

    Virtual screening for active substances against the coronavirus

    The University of Basel is part of the global search for a drug to fight the rampant coronavirus. Researchers in the Computational Pharmacy group have so far virtually tested almost 700 million substances, targeting a specific site on the virus – with the aim of inhibiting its multiplicatio ... more

    Inner “clockwork” sets the time for cell division in bacteria

    Researchers at the Biozentrum of the University of Basel have discovered a “clockwork” mechanism that controls cell division in bacteria. In two publications, in “Nature Communications” und “PNAS”, they report how a small signaling molecule starts the “clock”, which informs the cell about t ... more

More about Université de Genève

  • q&more articles

    Combinatorial explosion in separation sciences

    In analytical sciences one of the major goals is to develop and validate methods for the identification and quantification of molecules in complex samples to support investigations in the pharmaceutical sciences, environmental sciences, food sciences, biology and medicine. more

    Detecting and manipulating ions

    The pH electrode is now ubiquitous for the monitoring of chemical processes. Progress in materials chemistry and fundamental methodology opens the door to new exciting approaches. more

  • Authors

    Prof. Dr. Gérard Hopfgartner

    Gérard Hopfgartner, studied chemistry at the University of Geneva and received his Ph.D. degree in 1991 in the field of organic geochemistry and mass spectrometry. He pursued his formation as a postdoctoral fellow at Cornell University in the domain of LC-MS/MS atmospheric pressure ionizati ... more

    Prof. Dr. Eric Bakker

    is Professor of Chemistry at the University of Geneva. He was educated at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland. After his Ph.D. he pursued postdoctoral studies at the University of Michigan in Ann Arbor, U.S.A. His independent career started at Auburn Unive ... more

    Xiaojiang Xie

    is currently a Ph.D. candidate in Prof. Eric Bakker’s research group at the University of Geneva. Between obtaining his Bachelor’s degree from Nanjing University in China and starting his studies in Geneva, he worked for half a year in WuXi AppTech (Shanghai) and one year and a half in the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE