08-Nov-2016 - Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

New procedure for producing safe and more effective vaccines

A consortium of four Fraunhofer Institutes (the Fraunhofer Institute for Cell Therapy and Immunology IZI, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, and the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB) is developing a way of inactivating viruses and other pathogens based on low energy electron irradiation. This may aid the manufacture of more effective, safe and also more cost-effective vaccines.

Since as early as the 1950s, toxic chemicals such as formaldehyde have been used to inactivate pathogens for so-called killed vaccines (e.g. to fight influenza, polio or hepatitis A viruses). This procedure, which has barely changed since, marked a milestone in infection biology at the time, however it is still subject to various limitations to this day. The chemical treatment, which can last several weeks, also destroys some of the pathogens' surface structures that the immune system could use to recognize and attack following infection. Drugs manufactured in this way either have to be administered in high concentrations or have to be boosted at regular intervals in order to offer sufficient protection – a fact that hampers their use in poorer and structurally weak countries.

“Inactivation by means of low energy electron irradiation could well be the next major milestone in vaccine research,” remarks Project Manager Dr. Sebastian Ulbert from Fraunhofer IZI, summing up the advantages of the new technology. The Fraunhofer consortium has been working for three years on this alternative technology for inactivation through application of low energy electron irradiation. The project results show that the technology is fundamentally applicable to an entire spectrum of different types of virus (e.g. polio or influenza) as well as other kinds of pathogen (bacteria, parasites). Irradiation destroys the genetic substance the viruses need to multiply. Unlike chemical inactivation using formaldehyde, the structural proteins (antigens) that are vital to the immune response remain intact. The hope is that this enables to the body to form much more specific antibodies against the pathogens, keeping it better protected. Ultimately, lower doses may be able to be used in vaccinations.

With a grant of USD 1.85 million, the Bill & Melinda Gates Foundation is now funding the application of the irradiation technology in order to develop a new polio vaccine.

Fraunhofer FEP and Fraunhofer IPA are jointly developing the basic design of a prototype for an automated irradiation installation. This experimental unit should be installed at Fraunhofer IZI in Leipzig by autumn 2018. In this way, a novel, compact, and highly efficient technology for producing safe economical vaccines will be developed through the application of low-energy electron radiation. The Fraunhofer IGB is working in collaboration with the Fraunhofer IZI on the manufacturing and immunological characterization of the pathogens.

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers

  • Fraunhofer
  • vaccines
  • immunology
  • bioprocess technology
  • antibodies

More about Fraunhofer-Institut FEP

  • News

    Producing vaccines without the use of chemicals

    Producing vaccines is a tricky task – especially in the case of inactivated vaccines, in which pathogens must be killed without altering their structure. Until now, this task has generally involved the use of toxic chemicals. Now, however, an innovative new technology developed by Fraunhofe ... more

    Organic photodiodes – more economical detectors for the NIR region

    The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be introducing a new generation of organic photodiodes on silicon substrates (OPD-on-silicon) during the SEMI European Imaging & Sensors Summit 2017. Optical sensors are pervasive. Domestic life a ... more

More about Fraunhofer-Gesellschaft

  • News

    Vegetable proteins replace petroleum-based raw materials

    Just like cellulose, lignin and fats, proteins are renewable raw materials. Their potential for the chemical industry remains largely untapped. Research teams at the Fraunhofer Institute for Process Engineering and Packaging IVV are collaborating with partners to change all this, the idea b ... more

    Fraunhofer presents high-speed microscope with intuitive gesture control

    The Fraunhofer Institute for Production Technology IPT in Aachen has developed a high-speed microscope for quality control of large-area objects for the semiconductor and electronics industries or for rapid testing of biological samples. The microscope digitizes samples with up to 500 frame ... more

    Pocket-size food scanner

    According to a study by the environmental organization WWF Germany, ten million metric tons of food are thrown in the garbage every year in Germany despite still being edible. A mobile food scanner will allow consumers and supermarket operators in the future to test whether food items have ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: