To use all functions of this page, please activate cookies in your browser.
Mussel research strenghtens graphene
Polydopamine acts as binder to achieve high mechanical and electrical properties
Researchers demonstrated the mussel-inspired reinforcement of graphene fibers for the improvement of different material properties. A research group under Professor Sang Ouk Kim applied polydopamine as an effective infiltrate binder to achieve high mechanical and electrical properties for graphene-based liquid crystalline fibers.
This bio-inspired defect engineering is clearly distinguishable from previous attempts with insulating binders and proposes great potential for versatile applications of flexible and wearable devices as well as low-cost structural materials. The two-step defect engineering addresses the intrinsic limitation of graphene fibers arising from the folding and wrinkling of graphene layers during the fiber-spinning process.
Bio-inspired graphene-based fiber holds great promise for a wide range of applications, including flexible electronics, multifunctional textiles, and wearable sensors. In 2009, the research group discovered graphene oxide liquid crystals in aqueous media while introducing an effective purification process to remove ionic impurities. Graphene fibers, typically wet-spun from aqueous graphene oxide liquid crystal dispersion, are expected to demonstrate superior thermal and electrical conductivities as well as outstanding mechanical performance.
Nonetheless, owing to the inherent formation of defects and voids caused by bending and wrinkling the graphene oxide layer within graphene fibers, their mechanical strength and electrical/thermal conductivities are still far below the desired ideal values. Accordingly, finding an efficient method for constructing the densely packed graphene fibers with strong interlayer interaction is a principal challenge.
Professor Kim's team focused on the adhesion properties of dopamine, a polymer developed with the inspiration of the natural mussel, to solve the problem. This functional polymer, which is studied in various fields, can increase the adhesion between the graphene layers and prevent structural defects.
Professor Kim's research group succeeded in fabricating high-strength graphene liquid crystalline fibers with controlled structural defects. They also fabricated fibers with improved electrical conductivity through the post-carbonization process of polydopamine.
Based on the theory that dopamine with subsequent high temperature annealing has a similar structure with that of graphene, the team optimized dopamine polymerization conditions and solved the inherent defect control problems of existing graphene fibers.
They also confirmed that the physical properties of dopamine are improved in terms of electrical conductivity due to the influence of nitrogen in dopamine molecules, without damaging the conductivity, which is the fundamental limit of conventional polymers.
Professor Kim, who led the research, said, "Despite its technological potential, carbon fiber using graphene liquid crystals still has limits in terms of its structural limitations." This technology will be applied to composite fiber fabrication and various wearable textile-based application devices."
Korea Advanced Institute of Science and Technology (KAIST)
Facts, background information, dossiers
- graphene
- graphene oxide
- dopamine
- structural defects
- engineering
- polydopamine
- polymers
- liquid crystals
- impurities
- flexible electronics
- binders
- fibers
Most read news
- Effective and cheap sound-absorbing nanofoam
- Revealing the molecular mechanisms of the circadian clock
- Environmentally friendly production of mandelic acid
- Flexible organic electronics mimic biological mechanosensory nerves
- Synapses as a model: solid-state memory in neuromorphic circuits
- Bacteria-based biohybrid microrobots on a mission to one day battle cancer
- Nanofur for oil spill cleanup
- Mettler Toledo opens new Competence Center in the Middle-East
- Novel materials convert visible into infrared light
- New insights into underwater adhesives
News from science
Alle- The 7th BioProScale Symposium took place again as in-person event in Berlin
- 6th BioProScale Symposium 2021 – held virtually for the first time
- Platelets instead of spheres make screens more economical
- Fraunhofer presents high-speed microscope with intuitive gesture control
- Printing nanoparticle shapes for medical applications
News from Korea, Republic of (South Korea)
AlleTopics A-Z
All topicsq&more – the networking platform for quality excellence in lab and process
The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.
> more about q&more
q&more is supported by: