To use all functions of this page, please activate cookies in your browser.
Machine-learning driven findings uncover new cellular players in tumor microenvironment
Involvement of adipocytes in nivolumab response in ipilimumab resistant melanoma patients
New findings presented by CytoReason reveals possible new cellular players in the tumor microenvironment that could impact the treatment process for the most in-need patients - those who have already failed to respond to ipilimumab (anti-CTLA4) immunotherapy. Once validated, the findings could point the way to improved strategies for the staging and ordering of key immunotherapies in refractory melanoma. The data, being presented at the 30th Anniversary American Association for Cancer Research Special AI Conference, also reveals previously unidentified potential targets for future new therapies.
Analysis of data from melanoma biopsies, using CytoReason's proprietary machine learning-based approach, identified cells and genes that distinguish between nivolumab responders and non-responders in a cohort of ipilimumab resistant patients. The analysis revealed that adipocyte abundance is significantly higher in ipilimumab resistant nivolumab responders compared to non-responders (p-value = 2x10-7). It also revealed several undisclosed potential new targets that may be valuable in the quest for improved therapy in the future.
Adipocytes are known to be involved in regulating the tumor microenvironment. However, what these findings appear to show is that adipocytes may play a previously unreported regulatory role in the ipilimumab resistant nivolumab sensitive patient population, possibly differentiating nivolumab responders vs non-responders. It should be noted that these are preliminary findings based on a small sample of patients, and further work is needed to validate the results.
"The adipocyte finding was unexpected and raises many questions about the role of adipocytes in the tumor/immune response interface. It is currently unclear if adipocytes are affected by the treatment or vice versa, or represent a different tumor type", said Yair Benita, Head of Scientific Operations at CytoReason. "However, what we do know is that CytoReason's technology has put the spotlight on adipocytes, and the need to build a strategy to track them in future studies, so as to better understand their possible role in immunotherapy"
Gene expression analysis is a powerful tool in advancing our understanding of disease. However, approximately 90% of the specific pattern of cellular gene expression signature is driven by the cell composition of the sample. This obfuscates the expression profiling, making identification of the real culprits highly problematic.
CytoReason's platform works to overcome these issues. In this study, using a single published data set, CytoReason was able to apply its knowledge base and technologies to rebuild cellular composition and cell specific expression. This enabled CytoReason to undertake a cell level analysis, uncovering hidden cellular activity that was mapped back to specific genes that can be shown to emerge only when therapy is showing and effect.
"The immune system is predominantly cell-based. CytoReason is unique in that our disease models are specifically designed on a cellular level - replicating biology to crack key biological challenges, while learning from every data set", said David Harel, CEO, CytoReason. "CytoReason's computational platform integrates genetics, genomics, proteomics, cytometry and literature with machine learning to create our disease models. This analysis further demonstrates CytoReason's ability to generate novel hypotheses for new biological relationships that are often hidden to conventional methods - providing vital clues that are highly valuable in the drug discovery and development process."
Facts, background information, dossiers
- ipilimumab
- melanoma
- nivolumab
- disease models
- adipocytes
- immunotherapies
- immune system
- genetics
- gene expression
- drug discovery
- gene expression analysis
- cytometry
- genomics
- ipilimumab resistan…
Most read news
- Expanding the reach of therapeutic antibodies
- How the internal compass is constructed in magnetotactic bacteria
- Chemically tailored Graphene
- Hospital germs have their flaws too
- Optimized Binding Cavity
- A Step Ahead in Pharmaceutical Research
- New applications for multicolor OLED microdisplays
- Big results from small solutions
- Batteries without critical raw materials
- Mettler Toledo opens new Competence Center in the Middle-East
News from research
Alle- The 7th BioProScale Symposium took place again as in-person event in Berlin
- 6th BioProScale Symposium 2021 – held virtually for the first time
- Platelets instead of spheres make screens more economical
- Printing nanoparticle shapes for medical applications
- Growth factors in single cells counted for the first time
News from Israel
Alle- Mystery molecule in bacteria is revealed to be a guard
- Glow Reveals Dangerous Bacteria
- First 3D heart using patient's biological materials printed
- Machine-learning driven findings uncover new cellular players in tumor microenvironment
- Divide and conquer: A key to creating better medicines with fewer side effects
Topics A-Z
All topicsq&more – the networking platform for quality excellence in lab and process
The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.
> more about q&more
q&more is supported by: