q&more
My watch list
my.chemie.de  
Login  

News

How to make a protein trap

PublicDomainPictures, pixabay.com, CC0

Brefeldin A is a natural substance with promising potential as a candidate for cancer therapy and other medical uses. It is now built from scratch step by step at the laboratory.

Michael Fuchs

The macro-cyclic fungal metabolite Brefeldin A and the critical trans-configured double bond (arrows) that has an impact on the effect of the compound. Blue = carbon; red = oxygen; light blue = hydrogen.

14-Feb-2017: Once they can synthesise molecules of active natural substances, scientists will be able to harness nature’s medicine cabinet for the drugs of the future. By testing newly developed synthesising processes and catalysts, a project funded by the Austrian Science Fund FWF managed to produce the promising natural substance Brefeldin A faster and in larger quantities.

In its day, penicillin was discovered by accident. Many people know the story of Alexander Fleming who returned to his lab in London after a holiday and found mould on a culture plate with a bacteria culture that had not grown. Further tests revealed that the mould killed gram-positive bacteria but was well tolerated by human beings. It took years until Fleming’s colleagues were able to use penicillin as a lifesaving antibiotic. Today, scientists screen nature’s medicine cabinet very systematically and test the effect of natural substances. In order to do that, they need significantly more than just a drop of plant sap or fungal secretion. The Austrian Science Fund FWF awarded an Erwin-Schrödinger grant to Michael Fuchs, a university assistant at the University of Graz, so he could spend 18 months doing research at the German Max-Planck-Institut für Kohlenforschung.

The protein trap grown by a fungus

Like penicillin, Brefeldin A is derived from an unremarkable fungal mould (Penicillium brefeldianum). This natural substance breaks the protein transport chains in eukaryotic cells. As a consequence, the cellular protein factory (Golgi apparatus) disintegrates and the cell dies. “Brefeldin A has been shown to inhibit the uncontrolled growth of a multitude of human cancer cell lines. The first attempt to use the substance in clinical trials failed, however, because the molecule degrades and is excreted very quickly”, Michael Fuchs says in explaining the status quo. The potent substance can be extracted by fermenting the fungus or it can be built from scratch step by step in the laboratory. Previously used routes of synthesis never produced a yield of more than 15 milligrams.

New process yields more of the substance faster

To remedy that situation, this basic research project focused on a faster synthesis of larger amounts of the substance and on the experimental testing of newly developed synthetical methods and catalysts with the help of the complex target molecule. One crucial aspect was the precise construction of a trans-configured double bond. The beneficial effect of a compound is determined by the exact spatial orientation of the chemical groups forming it. Scientists distinguish ‘cis’ and ‘trans’ orientations. At best, one of the two may be ineffective; at worst it may be harmful.

The construction process at the lab consists of 16 successive steps, with each step adding new elements to the growing molecule. The reactions are initiated with catalysts and fed with substrates. “In the last but one step we identified an unexpected side product which reduces the amount of end product gained”, notes Michael Fuchs. Nevertheless, the new method still resulted in an output of ca. 500 milligrams of Brefeldin A, representing a 30-fold amount of what had been obtained previously.

The chemist conducted further experiments which enabled him to stop the process at the desired stage and take a closer look at the intermediate product. The gained insight allows further improvement of the catalyst in order to have the reaction run to completion. Once the building plan is known exactly, the next step can be to produce derivatives by introducing small chemical modifications. Derivatives of natural substances are an established way of remedying shortcomings – such as (too) fast degradation. Back in Graz, Michael Fuchs is currently working on synthesising natural substances by means of ecologically harmless bio-catalytic processes.

Original publication:
Fuchs, M.; Fürstner, A.; "trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A"; Angewandte Chemie, Int. Ed. 2015; 54, 3978-3982
Leutzsch, M.; Wolf, L. M.; Gupta, P.; Fuchs, M.; Thiel, W.; Farès, C.; Fürstner, A.; "Formation of Ruthenium Carbenes by gem-Hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-Hydrogenation"; Angewandte Chemie, Int. Ed.; 2015, 54, 12431-12436

Facts, background information, dossiers

  • Penicillium brefeldianum

More about Karl-Franzens-Universität Graz

  • News

    Photosynthetic microalgae as biocatalysts

    A carpet of blue-green algae can literally ‘cloud’ the summer’s swimming pleasure at the lake. This is caused by a few strains of photosynthetically active microalgae, also known as cyanobacteria. Other harmless strains of cyanobacteria have great potential for biotechnological applications ... more

  • q&more articles

    Lipidomics – a new kid on the “OMICS” block

    Progress in research is – to a large extent – driven by technological and analytical advance-ments. This is particularly true for the field of lipid research in the biomedical field, which was hampered for decades by the limited availability of analytical tools to address the enormous compl ... more

  • Authors

    Prof. Dr. Sepp D. Kohlwein

    Sepp D. Kohlwein, born in 1954, studied Technical Chemistry at Graz University of Technology and received his technical doctorate there in 1982 at the Institute of Biochemistry. Until 2001, he worked there as an associate professor. After several research stays at the Albert Einstein Colleg ... more

More about Fonds zur Förderung der wissenschaftlichen Forschung

  • News

    Instilling order and knowledge into the flood of data

    In the context of a project funded by the Austrian Science Fund FWF, a research group from the St. Pölten University of Applied Sciences has developed a versatile framework for data visualisation that permits easy integration of expert knowledge. Processing large amounts of data is one of t ... more

    Tracking microbial faecal pollution in water

    In a project supported by the Austrian Science Fund FWF, the microbiologist Andreas Farnleitner is looking at new methods for analysing faecal pollution in water. Using DNA analytics, the scientist aims to develop comprehensive and simple methods to determine the extent and origin of faecal ... more

    The marine super glue

    Barnacles exude an adhesive with exceptional bonding properties. In a project supported by the Austrian Science Fund FWF, biologists from Vienna have investigated this substance which has enormous medical and engineering potential and have thereby gained many new insights. It was a typical ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE