21-Feb-2017 - RIKEN

In-mouse catalysis

Organ-targeted metal-complex catalysis within living biological systems

Address and deliver: A gold catalyst can be delivered to a target organ in a higher organism where it performs a chemical transformation visualized by bioimaging. This intriguing approach has been introduced by a Japanese team of scientists. It could make organometallic catalysis applicable for therapy or diagnostics.

How is a therapeutically useful catalyst guided into its target tissue to synthesize bioactive molecules and drugs in higher level? How can its activity be visualized there? Noninvasive targeting for therapy, biological sensing, and imaging has become one of the most active biomedical research areas. Katsunori Tanaka and his colleagues at RIKEN, Waseda University, and JST-PRESTO (Japan) and Kazan Federal University (Russia) are especially interested in biocompatible metal complexes and, among them, gold catalysts to perform synthetic transformations in a target tissue. The challenge, however, is to bring the gold specifically to its target organ and to establish a visualization scheme to monitor the ongoing biochemical transformation.

Gold ions can be conjugated to a hydrophobic protein ligand, and this complex can be bound to albumin, an abundant water-soluble protein. The albumin is then furnished with sugar-type molecules, the glycans, which carry the chemical groups responsible for glycoalbumin accumulation in a target organ: "This work explores the adaptation and usage of organ-targeting glycans as biologically-compatible metal carriers," the scientists wrote. Thus the glycoalbumin can deliver the biocompatible metal catalyst, namely the gold complex. Intriguingly, this gold complex efficiently acts as an organometallic catalyst that can perform the reaction between biologically relevant molecules and organic substrates, which means it could be a relevant drug or diagnostic compound.

The scientists used the gold complex to bind a fluorescent dye to certain surface proteins present in the target tissue, which was either the liver or the intestine. To visualize the reaction, they performed fluorescent imaging of the whole living mouse. Within two hours after the injection of the catalyst and the substrate (the functionalized fluorescent dye) into the blood circuit, strong fluorescence in the two organs demonstrated successful in vivo gold catalysis. Thus, a catalytically active gold complex was sent and delivered to a target organ within a short time and without the laborious development of antibodies. As an outlook the scientists envisage biomedical applications, especially for metal catalysts with their unique reactivities: "Example therapies may include uncaging of active, cancer therapeutic enzymes selectively at tumor sites or [...] reactions to produce active drug molecules at targeted organs," they wrote.

Facts, background information, dossiers

  • organs
  • imaging
  • glycans

More about RIKEN

  • News

    A new, sustainable way to make hydrogen for fuel cells and fertilizers

    A new sustainable and practical method for producing hydrogen from water has been discovered by a team of researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan led by Ryuhei Nakamura. Unlike current methods, the new method does not require rare metals that are exp ... more

    New hydrogel stretches and contracts like a heat-driven muscle

    In research a team led by scientists from the RIKEN Center for Emergent Matter Science in Japan has developed a new hydrogel that works like an artificial muscle - quickly stretching and contracting in response to changing temperature. They have also managed to use the polymer to build an L ... more

More about Wiley-VCH

  • News

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

    Garlic ingredient from the lab bench

    Fresh garlic extracts contain a variety of healthy organosulfur compounds, among which ajoene forms a major oil-extractable ingredient. Now, chemists in the United Kingdom have synthesized ajoene from readily available components for the first time. The results show that ajoene is accessibl ... more

    Smart Fluorescent Dyes

    Controlling the excited electronic states in luminescent systems remains a challenge in the development of fluorescent and phosphorescent dyes. Now, scientists in Japan have developed a unique organic fluorophore that changes its emission color without loss of efficiency when externally sti ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: