28-Feb-2017 - University of Tsukuba

Improving DNA-Detecting Transistors

Graphene-based transistors could soon help diagnose genetic diseases

Researchers in India and Japan have developed an improved method for using graphene-based transistors to detect disease-causing genes.

Graphene field-effect transistors (GFETs) can detect harmful genes through DNA hybridization, which occurs when a 'probe DNA' combines, or hybridizes, with its complementary 'target DNA.' Electrical conduction changes in the transistor when hybridization occurs.

Nobutaka Hanagata of Japan's National Institute for Materials Science and colleagues improved the sensors by attaching the probe DNA to the transistor through a drying process. This eliminated the need for a costly and time-consuming addition of 'linker' nucleotide sequences, which have been commonly used to attach probes to transistors.

The research team designed GFETs that consist of titanium-gold electrodes on graphene - a one-atom-thick layer of carbon - deposited on a silicon substrate. Then they deposited the DNA probe, in a saline solution, onto the GFET and left it to dry. They found that this drying process led to direct immobilization of the probe DNA on the graphene surface without a need for linkers. The target DNA, also in saline solution, was then added to the transistor and incubated for four hours for hybridization to occur.

The GFET operated successfully using this preparation method. A change in electrical conduction was detected when the probe and target combined, signaling the presence of a harmful target gene. Conduction did not change when other non-complementary DNA was applied.

DNA hybridization is usually detected by labelling the target with a fluorescent dye, which shines brightly when it combines with its probe. But this method involves a complicated labelling procedure and needs an expensive laser scanner to detect fluorescence intensity. GFETs could become a cheaper, easier to operate, and more sensitive alternative for detecting genetic diseases.

"Further development of this GFET device could be explored with enhanced performance for future biosensor applications, particularly in the detection of genetic diseases," conclude the researchers in their study.

Facts, background information, dossiers

  • hybridization
  • DNA hybridization
  • transistors
  • field effect transistors
  • genes
  • graphene field-effe…

More about University of Tsukuba

  • News

    Electrons Passed Around

    Photoinduced charge transfers are an interesting electronic property of Prussian blue and some analogously structured compounds. A team of researchers has now been able to elucidate the ultrafast processes in the light-induced charge transfer between iron and manganese in a manganese-contai ... more

    Measuring the mass of molecules on the nano-scale

    Working with a device that slightly resembles a microscopically tiny tuning fork, researchers at the University of Tsukuba in Japan have recently developed coupled microcantilevers that can make mass measurements on the order of nanograms with only a 1 percent margin of error - potentially ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: